分析 (1)由题意,2p=6,即可得出抛物线方程为y2=6x;
(2)设线段AB的中点为M(x0,y0),求出线段AB的垂直平分线的方程由此能求出直线AB的垂直平分线经过定点C(5,0).
(3)直线AB的方程为y-y0=$\frac{3}{{y}_{0}}$(x-2),代入y2=6x,由此利用两点间距离公式和点到直线距离公式能求出△ABC面积的表达式,利用均值定理能求出ABC面积的最大值.
解答 (1)解:由题意,2p=6,∴抛物线方程为y2=6x.…(2分)
(2)设线段AB的中点为M(x0,y0),
则x0=2,y0=$\frac{{y}_{1}+{y}_{2}}{2}$,kAB=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{3}{{y}_{0}}$.
线段AB的垂直平分线的方程是y-y0=-$\frac{{y}_{0}}{3}$(x-2),①
由题意知x=5,y=0是①的一个解,
所以线段AB的垂直平分线与x轴的交点C为定点,
且点C坐标为(5,0).
所以直线AB的垂直平分线经过定点C(5,0).…(4分)
(2)由①知直线AB的方程为y-y0=$\frac{3}{{y}_{0}}$(x-2),①
即x=$\frac{{y}_{0}}{3}$(y-y0)+2,②
②代入y2=6x得y2=2y0(y-y0)+12,即y2-2y0y+2y02-12=0,③
依题意,y1,y2是方程③的两个实根,且y1≠y2,
所以△>0,-2$\sqrt{3}$<y0<2$\sqrt{3}$.
|AB|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$=$\frac{2}{3}\sqrt{(9+{{y}_{0}}^{2})(12-{{y}_{0}}^{2})}$.
定点C(5,0)到线段AB的距离h=|CM|=$\sqrt{9+{{y}_{0}}^{2}}$.
∴S△ABC=$\frac{1}{3}\sqrt{(9+{{y}_{0}}^{2})(12-{{y}_{0}}^{2})}$•$\sqrt{9+{{y}_{0}}^{2}}$.…(8分)
(3)由(2)知S△ABC=$\frac{1}{3}\sqrt{(9+{{y}_{0}}^{2})(12-{{y}_{0}}^{2})}$•$\sqrt{9+{{y}_{0}}^{2}}$≤$\frac{1}{3}\sqrt{\frac{1}{2}(\frac{9+{{y}_{0}}^{2}+24-2{{y}_{0}}^{2}+9+{{y}_{0}}^{2}}{3})^{3}}$=$\frac{14\sqrt{7}}{3}$,…(11分)
当且仅当$9+{{y}_{0}}^{2}$=24-2${{y}_{0}}^{2}$,
即y0=$±\sqrt{5}$
所以,△ABC面积的最大值为$\frac{14\sqrt{7}}{3}$.…(13分)
点评 本题考查直线的垂直平分线经过定点的证明,考查三角形面积的表达式的求法,考查三角形面积的最大值的求法,解题时要认真审题,注意均值定理的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com