分析 (1)求得f(x)的对称轴方程,可得f(x)在[0,1]递减,在[1,3]上递增,即可得到最值,解方程可得a,b的值;
(2)由题意可得在k≤f(x),xx∈[1,4]上恒成立,运用基本不等式,可得右边函数的最小值,即可得到k的范围.
解答 解:(1)函数g(x)=ax2-2ax+1+b=a(x-1)2+b-a+1,
∵a>0,开口向上,对称轴x=1,
∴f(x)在[0,1]递减,在[1,3]上递增,
∴f(x)min=f(1)=a-2a+1+b=1,f(x)max=f(3)=9a-6a+1+b=5,
∴a=b=1;
(2)∵f(x)=$\frac{g(x)}{x}$=$\frac{{x}^{2}-2x+2}{x}$=x+$\frac{2}{x}$-2≥2$\sqrt{x•\frac{2}{x}}$=2$\sqrt{2}$-2,当且仅当x=$\sqrt{2}$∈[1,4]时取等号,
又不等式f(x)-k≥0在x∈[1,4]上恒成立,
∴k≤f(x),在x∈[1,4]上恒成立,
∴k≤2$\sqrt{2}$-2,
故k的取值范围为(-∞,2$\sqrt{2}$-2].
点评 本题考查二次函数的最值的求法,注意讨论对称轴和区间的关系,考查不等式恒成立问题的解法,注意运用参数分离和基本不等式的应用,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | $\frac{7}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a | B. | b | C. | c | D. | d |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x2 | B. | $y={x^{\frac{1}{2}}}$ | C. | y=x-1 | D. | y=x-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com