精英家教网 > 高中数学 > 题目详情
1.圆(x-4)2+(y-1)2=5内一点P(3,0),过P点弦的中点轨迹方程为(x-3.5)2+(y-0.5)2=0.5.

分析 设弦中点为M(x,y),由圆的性质可知CM⊥PM,由勾股定理,得中点P的轨迹方程.

解答 解:由圆的方程可知,圆的圆心为C(4,1).
设弦中点为M(x,y),由圆的性质可知CM⊥PM,
∴过P点弦的中点轨迹是以PC为直径的圆
得所求的弦中点的轨迹方程:(x-3.5)2+(y-0.5)2=0.5.
故答案为:(x-3.5)2+(y-0.5)2=0.5.

点评 本题考查过P点弦的中点的轨迹方程,考查圆的方程,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设f(x)=|ax-2|.
(1)若关于x的不等式f(x)<3的解集为(-$\frac{5}{3}$,$\frac{1}{3}$),求a的值;
(2)f(x)+f(-x)≥a对于任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数g(x)=ax2-2ax+1+b(a>0)在区间[0,3]上有最大值5和最小值1.设f(x)=$\frac{g(x)}{x}$.
(1)求a,b的值;
(2)若不等式f(x)-k≥0在x∈[1,4]上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若关于x的不等式xln+x-kx+3k>0对任意x>1恒成立,则整数k的最大值为(  )
A.4B.3C.2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,以椭圆的一个短轴端点及两个焦点为顶点的三角形的面积为$\sqrt{3}$,圆C的方程为(x-a)2+(y-b)2=($\frac{a}{b}$)2
(1)求椭圆及圆C的方程:
(2)过原点O作直线l与圆C交于B两点,若$\overrightarrow{CA}$$•\overrightarrow{CB}$=-2,求直线l被圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若奇函数f(x)在R上是减函数,且f(1-a)+f(2a-5)≥0,则a的取值范围是(  )
A.(-∞,2]B.(-∞,4]C.[2,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=($\frac{1}{2}$)${\;}^{{x}^{2}-2x}$的单调递减区间为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.化简:$\sqrt{{{({2-π})}^2}}$=π-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.解关于x的不等式$\frac{(a+2)x-4}{x-1}$≤2(其中a>0).

查看答案和解析>>

同步练习册答案