精英家教网 > 高中数学 > 题目详情
4.下列函数中既是偶函数,又是在区间(0,+∞)上单调递减的是(  )
A.y=x2B.$y={x^{\frac{1}{2}}}$C.y=x-1D.y=x-2

分析 根据幂函数奇偶性与单调性与指数部分的关系,我们逐一分析四个答案中幂函数的性质,即可得到答案.

解答 解:函数y=x2,是偶函数,但在区间(0,+∞) 上单调递增,故错误;
函数y=${x}^{\frac{1}{2}}$非奇非偶函数,故错误;
函数y=x-1,是奇函数,在区间(0,+∞) 上单调递减,故错误;
函数y=x-2,既是偶函数,在区间(0,+∞) 上单调递减,故正确,
故选D.

点评 本题考查的知识点是函数的单调性的判断与证明,函数奇偶性的判断,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若函数y=|log22x|在区间(0,a]上单调递减,则实数a的取值范围是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的函数f(x)=2|x|,记a=f(log0.53),b=f(log25),c=f(0),则a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数g(x)=ax2-2ax+1+b(a>0)在区间[0,3]上有最大值5和最小值1.设f(x)=$\frac{g(x)}{x}$.
(1)求a,b的值;
(2)若不等式f(x)-k≥0在x∈[1,4]上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=loga|x+1|(a>0且a≠1),当x∈(0,1)时,恒有f(x)<0成立,则函数g(x)=loga(-$\frac{3}{2}$x2+ax)的单调递减区间是(0,$\frac{a}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若关于x的不等式xln+x-kx+3k>0对任意x>1恒成立,则整数k的最大值为(  )
A.4B.3C.2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,以椭圆的一个短轴端点及两个焦点为顶点的三角形的面积为$\sqrt{3}$,圆C的方程为(x-a)2+(y-b)2=($\frac{a}{b}$)2
(1)求椭圆及圆C的方程:
(2)过原点O作直线l与圆C交于B两点,若$\overrightarrow{CA}$$•\overrightarrow{CB}$=-2,求直线l被圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=($\frac{1}{2}$)${\;}^{{x}^{2}-2x}$的单调递减区间为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(用数字作答)
从5本不同的故事书和4本不同的数学书中选出4本,送给4位同学,每人1本,问:
(1)如果故事书和数学书各选2本,共有多少种不同的送法?
(2)如果故事书甲和数学书乙必须送出,共有多少种不同的送法?
(3)如果选出的4本书中至少有3本故事书,共有多少种不同的送法?

查看答案和解析>>

同步练习册答案