精英家教网 > 高中数学 > 题目详情
20.椭圆$\frac{{x}^{2}}{4}$+y2=1的两个焦点为F1、F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则|$\overrightarrow{P{F}_{2}}$|=(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.$\frac{7}{2}$D.4

分析 先根据椭圆的方程求得椭圆的左准线方程,进而根据椭圆的第二定义求得答案.

解答 解:椭圆的左准线方程为x=-$\frac{{a}^{2}}{c}$=-$\frac{4\sqrt{3}}{3}$.
∵$\frac{|P{F}_{2}|}{|\sqrt{3}-(-\frac{4\sqrt{3}}{3})|}$=e=$\frac{\sqrt{3}}{2}$,∴|PF2|=$\frac{7}{2}$.
故选:C.

点评 本题主要考查了椭圆的定义.也可以利用通经与第定义求解,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图所示,三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,PA=AC=$\sqrt{2}$,则三棱锥P-ABC外接球的体积是(  )
A.$\frac{{\sqrt{2}π}}{3}$B.$\frac{8π}{3}$C.$\frac{4π}{3}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中,既是奇函数又在(0,+∞)单调递增的是(  )
A.y=x3B.y=|x|+1C.y=-x2+1D.y=2-|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=xlnx-$\frac{a}{2}$x2-x+a(a∈R).
(Ⅰ)当a=0时,求f(x)的单调区间;
(Ⅱ)若函数f(x)在其定义域内有两个不同的极值点.
(ⅰ)求a的取值范围;
(ⅱ)设两个极值点分别为x1,x2,证明:x1•x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求最值:
(1)已知a>0,b>0,且4a+b=1,求ab的最大值;
(2)已知x>0,y>0,且x+y=1,求$\frac{4}{x}$+$\frac{9}{y}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在正四棱锥V-ABCD中(底面是正方形,侧棱均相等),AB=2,VA=$\sqrt{6}$,且该四棱锥可绕着AB任意旋转,旋转过程中CD∥平面α,则正四棱锥V-ABCD在平面α内的正投影的面积的取值范围是(  )
A.[2,4]B.(2,4]C.[$\sqrt{6}$,4]D.[2,2$\sqrt{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数y=|log22x|在区间(0,a]上单调递减,则实数a的取值范围是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=|ax-2|.
(1)若关于x的不等式f(x)<3的解集为(-$\frac{5}{3}$,$\frac{1}{3}$),求a的值;
(2)f(x)+f(-x)≥a对于任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数g(x)=ax2-2ax+1+b(a>0)在区间[0,3]上有最大值5和最小值1.设f(x)=$\frac{g(x)}{x}$.
(1)求a,b的值;
(2)若不等式f(x)-k≥0在x∈[1,4]上恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案