精英家教网 > 高中数学 > 题目详情
4.(1)求函数f(x)=$\frac{1}{ln(x+1)}$+$\sqrt{4-{x}^{2}}$的定义域;
(2)已知函数f(x+3)的定义域为[-5,-2],求函数f(x+1)+f(x-1)的定义域.

分析 (1)根据对数函数以及二次根式的性质得到关于x的不等式组,解出即可;(2)求出f(x)的定义域,从而求出f(x+1)+f(x-1)的定义域即可.

解答 解:(1)要使函数有意义,
需$\left\{\begin{array}{l}{x+1>0}\\{ln(x+1)≠0}\\{4{-x}^{2}≥0}\end{array}\right.$即$\left\{\begin{array}{l}{x>-1}\\{x≠0}\\{-2≤x≤2}\end{array}\right.$,
取交集可得函数f(x)的定义域为(-1,0)∪(0,2];
(2)∵-5≤x≤-2,∴-2≤x+3≤1,
故函数f(x)的定义域为[-2,1],
由$\left\{\begin{array}{l}{-2≤x+1≤1}\\{-2≤x-1≤1}\end{array}\right.$,
可得-1≤x≤0,
故函数f(x+1)+f(x-1)的定义域为[-1,0].

点评 本题考查了求函数的定义域问题,考查对数函数以及二次根式的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.(用数字作答)
从5本不同的故事书和4本不同的数学书中选出4本,送给4位同学,每人1本,问:
(1)如果故事书和数学书各选2本,共有多少种不同的送法?
(2)如果故事书甲和数学书乙必须送出,共有多少种不同的送法?
(3)如果选出的4本书中至少有3本故事书,共有多少种不同的送法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC的三个顶点A(-1,0),B(1,0),C(3,2),其外接圆为⊙H.若直线l过点C,且被⊙H截得的弦长为2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={x|(x+3)(x-6)≥0},B={x|$\frac{x+2}{x-14}$<0}.
(1)求A∩∁RB;
(2)已知E={x|2a<x<a+1}(a∈R),若E⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=log2(x2-ax-3a)在区间(-∞,-2]上是减函数,则实数a的取值范围是(  )
A.(-∞,4)B.(-4,4]C.(-∞,4)∪[2,+∞)D.[-4,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=2x+sinx,且f(y2-2y+3)+f(x2-4x+1)≤0,则当y≥1时,$\frac{y}{x+1}$的取值范围是(  )
A.$[{\frac{1}{4},\frac{3}{4}}]$B.$[{0,\frac{3}{4}}]$C.$[{\frac{1}{4},\frac{1}{2}}]$D.$[{\frac{1}{4},\frac{1}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=ax2a+1-b+1是幂函数,则 a+b=(  )
A.2B.1C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}的前n项和Sn=3n+1,则a2+a3=24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设m∈R且m≠0,“不等式m+$\frac{4}{m}$>4”成立的一个充分不必要条件是(  )
A.m>0B.m>1C.m>2D.m≥2

查看答案和解析>>

同步练习册答案