精英家教网 > 高中数学 > 题目详情
(2013•许昌二模)已知函数f(x)=ax-ex(a>0).
(Ⅰ)当a=
12
时,求函数f(x)的单调区间;
(Ⅱ)当1≤a≤1+e时,求证:f(x)≤x.
分析:(Ⅰ)当a=
1
2
时,求出f′(x),解不等式f′(x)>0,f′(x)<0即得函数f(x)的单调区间;
(Ⅱ)构造函数F(x)=x-f(x)=ex-(a-1)x,利用导数证明F(x)≥0即可.
解答:(Ⅰ)解:当a=
1
2
时,f(x)=
1
2
x-ex
,令f′(x)=
1
2
-ex=0,x=-ln2
当x<-ln2时,f′(x)>0;当x>-ln2时,f′(x)<0,
∴函数f(x)的单调递增区间为(-∞,-ln2),递减区间为(-ln2,+∞).
(Ⅱ)证明:令F(x)=x-f(x)=ex-(a-1)x,
(1)当a=1时,F(x)=ex>0,∴f(x)≤x成立; 
(2)当1<a≤1+e时,F′(x)=ex-(a-1)=ex-eln(a-1)
当x<ln(a-1)时,F′(x)<0;当x>ln(a-1)时,F′(x)>0,
∴F(x)在(-∞,ln(a-1))上递减,在(ln(a-1),+∞)上递增,
∴F(x)≥F(ln(a-1))=eln(a-1)-(a-1)ln(a-1)=(a-1)[1-ln(a-1)],
∵1<a≤1+e,∴a-1>0,1-ln(a-1)≥1-ln[(1+e)-1]=0,
∴F(x)≥0,即f(x)≤x成立.
综上,当1≤a≤1+e时,有f(x)≤x.
点评:本题考查导数与函数的单调性问题,导数的符号决定函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•许昌二模)函数f(x)=Asin(ωx+
π
6
)(ω>0)
的图象与x轴的交点的横坐标构成一个公差为
π
2
的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,并且直线y=x+b是抛物线C2:y2=4x的一条切线.
(I)求椭圆C1的方程.
(Ⅱ)过点S(0,-
1
3
)
的动直线l交椭圆C1于A、B两点,试问:在直角坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过定点T?若存在求出T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌二模)已知变量x,y满足约束条件
x+2y-3≤0
x+3y-3≥0
y-1≤0.
,若目标函数z=ax+y仅在点(3,0)处取到最大值,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌二模)如图,已知PE切圆O于点E,割线PBA交圆O于A,B两点,∠APE的平分线和AE、BE分别交于点C,D
(Ⅰ)求证:CE=DE;
(Ⅱ)求证:
CA
CE
=
PE
PB

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌二模)抛物线y=-4x2的焦点坐标是(  )

查看答案和解析>>

同步练习册答案