精英家教网 > 高中数学 > 题目详情
设直线l:x-2y+2=0关于原点对称的直线为l′,若l′与椭圆x2+4y2=4的交点为P、Q,点M为椭圆上的动点,则使△MPQ的面积为
1
2
的点M的个数为(  )
A、1B、2C、3D、4
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:先求出直线l′的方程,与椭圆方程联立求得交点A和B的坐标,利用两点间的距离公式求出AB的长,再根据三角形的面积求出AB边上的高,设出P的坐标,利用点到直线的距离公式表示出P到直线l′的距离即为AB边上的高,得到关于a和b的方程,把P代入椭圆方程得到关于a与b的另一个关系式,两者联立利用根的判别式判断出a与b的值有几对即可得到交点有几个.
解答: 解:直线l关于原点对称的直线l′为y=-2x+2,与椭圆联立
y=-2x+2
x2+4y2=4

x=0
y=2
x=1
y=0

则A(0,2),B(1,0),所以AB=
5

∵△PAB的面积为
1
2
,所以AB边上的高为
5
5

设P的坐标为(a,b),则a2+
b2
4
=1

P到直线y=-2x+2的距离d=
|2a+b-2|
5
=
5
5

∴2a+b-2=1或2a+b-2=-1;
联立得
2a+b=3
a2+
b2
4
=1
①或
2a+b=1
a2+
b2
4
=1

解①得8a2-12a+5=0,因为△=144-160=-16<0,所以方程无解;
由②得:8a2-4a-3=0,△=16+96=112>0,
所以a有两个不相等的根,则对应的b也有两个不等的根,所以满足题意的P的坐标有两个.
故选B.
点评:考查学生会求直线与椭圆的交点坐标,灵活运用点到直线的距离公式化简求值.同时要求学生会利用根的判别式判断方程解的情况.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M={x|y=lg(2x-x2),x∈R},N={x|x<a},若M⊆N,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

|x-2|>0的解集为R.
 
(判断对错)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在区间(0,+∞)上为增函数的是(  )
A、y=ln(x+3)
B、y=-
x+2
C、y=(
1
2
)x
D、y=
1
x
-x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱锥V-ABCD可绕着AB任意旋转,CD∥平面α.若AB=2,VA=
5
,则正四棱锥V-ABCD在面α内的投影面积的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(-2,-3)和以Q为圆心的圆(x-m+1)2+(y-3m)2=4.
(1)求证:圆心Q在过点P的定直线上;
(2)当m为何值时,以PQ为直径的圆过原点?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
的夹角是45°,则向量2
a
与-
b
的夹角是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
418
•(
8
 
1
2
•(
1
3
 -
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

十进制3721写成:3721(10)=3×103+7×102+2×101+1×100与十进制类似,二进制11001可以写成11001(2)=1×24+1×23+0×22+0×211×20,则五进制432132可以写成
 

查看答案和解析>>

同步练习册答案