精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
|x|-sinx+1
|x|+1
(x∈R)的最大值为M,最小值为m,则M+m=______.
函数f(x)=
|x|-sinx+1
|x|+1
可变形为f(x)=1+
-sinx
|x|+1

g(x)=
-sinx
|x|+1
,,则g(-x)=
sinx
|x|+1
=-g(x),
∴g(x)为奇函数.
设当x=a时g(x)有最大值g(a),则当x=-a时,g(x)有最小值g(-a)=-g(a)
∵f(x)=1+g(x),
∴当x=a时f(x)有最大值g(a)+1,则当x=-a时,g(x)有最小值-g(a)+1
即M=g(a)+1,m=-g(a)+1,
∴M+m=2
故答案为2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案