精英家教网 > 高中数学 > 题目详情
2.计算$sin\frac{π}{6}+cos60°+tan\frac{π}{4}$=2.

分析 根据特殊三角函数的值计算即可.

解答 解:sin$\frac{π}{6}$=$\frac{1}{2}$,
cos60°=$\frac{1}{2}$.
tan$\frac{π}{4}$=1,
∴$sin\frac{π}{6}+cos60°+tan\frac{π}{4}$=2.
故答案为:2.

点评 本题考查了特殊函数值计算.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.P是抛物线y=x2上的动点,Q是直线2x-y-4=0上的动点,则|PQ|的最小值为(  )
A.$\frac{3\sqrt{5}}{5}$B.$\frac{4\sqrt{5}}{5}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等体积的球和正方体的表面积S与S正方体的大小关系是(  )
A.S正方体>SB.S正方体<SC.S正方体=SD.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在空间直角坐标系中,点(2,1,4)关于x轴的对称点的坐标为(  )
A.(-2,1,-4)B.(-2,-1,-4)C.(2,-1,-4)D.(2,1,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.420°是第几象限角(  )
A.第一B.第二C.第三D.第四

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,一海岛驻扎一支部队,海岛离岸边最近点B的距离是150km.在岸边距B点300km的点A处有一军需品仓库.有一批军需品要尽快送达海岛.A与B之间有一铁路,现用海陆联运方式运送,火车时速为50km,轮船时速为30km,试在岸边选一点C,先将军需品用火车送到点C,再用轮船从点C运到海岛.问点C选在何处可使运输时间最短?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),求当-1≤x≤1时,f(x)的解析式,并指出在[-1,1]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知菱形ABCD中,AB=2,∠A=120°,沿对角线AC折起,使二面角B-AC-D为60°,则点B到△ACD所在平面的距离为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在三棱锥S-ABC中,SA⊥底面ABC,SA=AB=$\frac{1}{2}$AC=a,∠BAC=60°,D是SC上的点.
(Ⅰ)若三棱锥的体积为$\frac{\sqrt{3}}{6}$,求a的值;
(Ⅱ)若SD=$\frac{1}{4}$SC,求证:AC⊥BD.

查看答案和解析>>

同步练习册答案