精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(2,4),B(4,2),C(6,6).

(1)求角A的余弦值;

(2)作AB的底边上的高CDD为垂足,求点D的坐标.

【答案】(1);(2).

【解析】

(1)直接利用题意求出三角形的边长,进一步利用余弦定理求出A的余弦值;(2)利用等边三角形和中点坐标公式的应用求出结果.

(1)平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(2,4),B(4,2),C(6,6).

如图所示:

根据两点间的距离公式,

解得:AB=2AC=BC=

在△ABC中,利用余弦定理cosA==

则:角A的余弦值为

(2)由于△ABC为等腰三角形,

所以:D点的横坐标x=,纵坐标为y=

则:D(3,3).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=logaa>0且a≠1)是奇函数,

(1)求实数m的值;

(2)若a=,并且对区间[3,4]上的每一个x的值,不等式fx)>(x+t恒成立,求实数t的取值范围.

(3)当x∈(ra-2)时,函数fx)的值域是(1,+∞),求实数ar的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】砂糖橘是柑橘类的名优品种,因其味甜如砂糖故名.某果农选取一片山地种植砂糖橘,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:kg),获得的所有数据按照区间(40,45],(45,50],(50,55],(55,60]进行分组,得到频率分布直方图如图所示.已知样本中产量在区间(45,50]上的果树株数是产量在区间(50,60]上的果树株数的.

(1)a,b的值;

(2)从样本中产量在区间(50,60]上的果树里随机抽取两株,求产量在区间(55,60]上的果树至少有一株被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的奇函数f(x)的周期为4,且x∈(0,2)时f(x)=ln(x2﹣x+b),若函数f(x)在区间[﹣2,2]上恰有5个零点,则实数b应满足的条件是(
A.﹣1<b≤1
B.﹣1<b<1或b=
C. <b
D. <b≤1或b=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

已知函数为常数)的图像与轴交于点,曲线在点处的切线斜率为.

(1)的值及函数的极值;

(2)证明:当时,

(3)证明:对任意给定的正数,总存在,使得当时,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的数列{an}的前n项和为Sn , 向量 =(Sn , an+1), =(an+1,4)(n∈N*),且
(1)求{an}的通项公式
(2)设f(n)= bn=f(2n+4),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈(1,+∞), >1;命题q:a∈(0,1),函数y=ax在(﹣∞,+∞)上为减函数,则下列命题为真命题的是(
A.p∧q
B.¬p∧q
C.p∧¬q
D.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲,乙,丙三位学生独立地解同一道题,甲做对的概率为 ,乙,丙做对的概率分别为m,n(m>n),且三位学生是否做对相互独立.记ξ为这三位学生中做对该题的人数,其分布列为:

ξ

0

1

2

3

P

a

b


(1)求至少有一位学生做对该题的概率;
(2)求m,n的值;
(3)求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:

年 份

2007

2008

2009

2010

2011

2012

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y关于t的线性回归方程;

(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

同步练习册答案