【题目】设函数f(x)=ex﹣x,h(x)=﹣kx3+kx2﹣x+1.
(1)求f(x)的最小值;
(2)设h(x)≤f(x)对任意x∈[0,1]恒成立时k的最大值为λ,证明:4<λ<6.
【答案】
(1)解:∵f(x)=ex﹣x,∴f′(x)=ex﹣1,
x∈(﹣∞,0)时,f′(x)<0,f(x)递减,
x∈(0,+∞)时,f′(x)>0,f(x)递增,
∴f(x)min=f(0)=1
(2)解:由h(x)≤f(x),化简可得k(x2﹣x3)≤ex﹣1,
当x=0,1时,k∈R,
当x∈(0,1)时,k≤ ,
要证:4<λ<6,则需证以下两个问题:
① >4对任意x∈(0,1)恒成立,
②存在x0∈(0,1),使得 <6成立,
先证:① >4,即证ex﹣1>4(x2﹣x3),
由(1)可得:ex﹣x≥1恒成立,
∴ex﹣1≥x,又x≠0,∴ex﹣1>x,
即证x≥4(x2﹣x3)1≥4(x﹣x2)(2x﹣1)2≥0,
(2x﹣1)2≥0,显然成立,
∴ >4对任意x∈(0,1)恒成立,
再证②存在x0∈(0,1),使得 <6成立,
取x0= , =8( ﹣1),
∵ < ,∴8( ﹣1)<6× =6,
故存在x0∈(0,1),使得 <6,
由①②可得:4<λ<6
【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,求出函数的最小值即可;(2)问题转化为证明① >4对任意x∈(0,1)恒成立,②存在x0∈(0,1),使得 <6成立,根据函数的单调性证明即可.
【考点精析】认真审题,首先需要了解函数的最值及其几何意义(利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值).
科目:高中数学 来源: 题型:
【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列表:
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
(3)为了研究喜欢打蓝球是否与性别有关,计算出K2 , 你有多大的把握认为是否喜欢打蓝球与性别有关? 附:
下面的临界值表供参考:
p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集为[﹣1,﹣1].
(1)求m的值;
(2)若a,b,c∈R,且 + + =m,求证:a2+b2+c2≥36.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
①当切线在两坐标轴上的截距为零时,设切线方程为y=kx,
则 ,解得k=2± ,
从而切线方程为y=(2± )x.
②当切线在两坐标轴上的截距不为零时,设切线方程为x+y-a=0,则 ,解得a=-1或3,
从而切线方程为x+y+1=0或x+y-3=0.
综上,切线方程为(2+ )x-y=0或(2- )x-y=0或x+y+1=0或x+y-3=0
(2)点P在直线l:2x-4y+3=0上,过点P作圆C的切线,切点记为M,求使|PM|最小的点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)求函数f(x)的单调区间和极值;
(2)若函数y=g(x)对任意x满足g(x)=f(4﹣x),求证:当x>2,f(x)>g(x);
(3)若x1≠x2 , 且f(x1)=f(x2),求证:x1+x2>4.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线l过定点P(0,1),且与直线l1:x-3y+10=0,l2:2x+y-8=0分别交于A、B两点.若线段AB的中点为P,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com