精英家教网 > 高中数学 > 题目详情
已知椭圆C1
x2
9
+
y2
b12
=1(b1>0)
与双曲线C2x2-
y2
b22
=1
(b2>0)的焦点相同,离心率之和为
8
3

(1)求b1、b2的值;
(2)设C1与C2在第一象限的交点为P,求点P到椭圆左焦点的距离.
分析:(1)利用双曲线与椭圆的焦点相同,离心率之和为
8
3
,建立方程,即可求b1、b2的值;
(2)利用椭圆、双曲线的定义,两式相加,即可求点P到椭圆左焦点的距离.
解答:解:(1)∵双曲线与椭圆的焦点相同,
∴c1=c2
∵离心率之和为
8
3
,∴
c1
3
+c2=
8
3
,…(4分)
∴c1=c2=2,
b1=
9-4
=
5
b2=
4-1
=
3
.     …(8分)
(2)椭圆与双曲线有相同的焦点,设左、右焦点分别为F1,F2
则由椭圆的定义知PF1+PF2=6(1)…(10分)
由双曲线的定义知PF1-PF2=2(2)…(12分)
由(1)+(2)得PF1=4
点P到椭圆左焦点的距离为4.                …(15分)
点评:本题考查椭圆、双曲线的定义,考查椭圆、双曲线的几何性质,正确运用椭圆、双曲线的定义是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C1:y2=4x的焦点与椭圆C2
x2
9
+
y2
b
=1
的右焦点F2重合,F1是椭圆的左焦点.
(1)在△ABC中,若A(-4,0),B(0,-3),点C在抛物线y2=4x上运动,求△ABC重心G的轨迹方程;
(2)若P是抛物线C1与椭圆C2的一个公共点,且∠PF1F2=α,∠PF2F1=β,求cosα•cosβ的值及△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C与椭圆C1
x2
9
+
y2
5
=1
有相同的焦点,且椭圆过点(2
3
3
)
,右焦点为F,
(1)求椭圆C的方程;
(2)若直线y=
1
2
x
与椭圆C交于M、N两点,求△FMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•杨浦区二模)(理)在平面直角坐标系xoy中,若在曲线C1的方程F(x,y)=0中,以(λx,λy)(λ为正实数)代替(x,y)得到曲线C2的方程F(λx,λy)=0,则称曲线C1、C2关于原点“伸缩”,变换(x,y)→(λx,λy)称为“伸缩变换”,λ称为伸缩比.
(1)已知曲线C1的方程为
x2
9
-
y2
4
=1
,伸缩比λ=2,求C1关于原点“伸缩变换”后所得曲线C2的方程;
(2)射线l的方程y=
2
2
x(x≥0)
,如果椭圆C1
x2
16
+
y2
4
=1
经“伸缩变换”后得到椭圆C2,若射线l与椭圆C1、C2分别交于两点A、B,且|AB|=
2
,求椭圆C2的方程;
(3)对抛物线C1:y2=2p1x,作变换(x,y)→(λ1x,λ1y),得抛物线C2:y2=2p2x;对C2作变换(x,y)→(λ2x,λ2y)得抛物线C3:y2=2p3x,如此进行下去,对抛物线Cn:y2=2pnx作变换(x,y)→(λnx,λny),得抛物线Cn+1:y2=2pn+1x,….若p1=1 , λn=(
1
2
)n
,求数列{pn}的通项公式pn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•杨浦区二模)(文)在平面直角坐标系xoy中,若在曲线C1的方程F(x,y)=0中,以(λx,λy)(λ为正实数)代替(x,y)得到曲线C2的方程F(λx,λy)=0,则称曲线C1、C2关于原点“伸缩”,变换(x,y)→(λx,λy)称为“伸缩变换”,λ称为伸缩比.
(1)已知曲线C1的方程为
x2
9
-
y2
4
=1
,伸缩比λ=2,求C1关于原点“伸缩变换”后所得曲线C2的方程;

(2)已知抛物线C1:y2=2x,经过伸缩变换后得抛物线C2:y2=32x,求伸缩比λ.
(3)射线l的方程y=
2
2
x(x≥0)
,如果椭圆C1
x2
16
+
y2
4
=1
经“伸缩变换”后得到椭圆C2,若射线l与椭圆C1、C2分别交于两点A、B,且|AB|=
2
,求椭圆C2的方程.

查看答案和解析>>

同步练习册答案