精英家教网 > 高中数学 > 题目详情
是两条不同的直线,是三个不同的平面,则下列命题中真命题的是(  )
A.若,则B.若 ,则
C.若D.若,则
D

试题分析:A中直线与平面也可能相交或平行,不一定垂直,所以不正确;B中两个平面不一定平行,以三棱柱为例即可证明,所以不正确;C中两个平面可能相交也可能平行,所以不正确;根据面面垂直的判定定理可知D正确.
点评:解决此类问题,要充分发挥空间想象能力,紧扣相应的判定定理和性质定理,定理中要求的条件缺一不可.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥的底面为等腰梯形,,,垂足为是四棱锥的高。

(Ⅰ)证明:平面 平面
(Ⅱ)若,60°,求四棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四面体中,,且E、F分别是AB、BD的中点,

求证:(1)直线EF//面ACD
(2)面EFC⊥面BCD

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两条直线,为两个平面,下列四个命题中,正确的命题是(   )
A.若所成的角相等,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直二面角α? ι?β,点A∈α,AC⊥ι,C为垂足,B∈β,BD⊥ι,D为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,

(1)求证:平面A B1D1∥平面EFG;
(2)求证:平面AA1C⊥面EFG.
(3)求异面直线AC与A1B所成的角

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知如图(1),正三角形ABC的边长为2a,CDAB边上的高,EF分别是ACBC边上的点,且满足,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2).

(Ⅰ) 求二面角B-AC-D的大小;
(Ⅱ) 若异面直线ABDE所成角的余弦值为,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥中,平面平面,是正三角形,已知

(1) 设上的一点,求证:平面平面;
(2) 求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设直线和平面,下列四个命题中,正确的是(  )
A.若B.若
C.若D.若

查看答案和解析>>

同步练习册答案