精英家教网 > 高中数学 > 题目详情
(12分)如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,

(1)求证:平面A B1D1∥平面EFG;
(2)求证:平面AA1C⊥面EFG.
(3)求异面直线AC与A1B所成的角
(1)先证平面平面,再证平面平面,从而可证结论;
(2)先证EF⊥AC,, 从而证明EF⊥平面,进而可证结论;
(3)

试题分析:(1)∵分别是的中点,
,
∴平面平面,
又∵,
∴平面平面,
∴平面∥平面.                                                             ……4分
(2)∵EF∥BD ,ABCD为正方形
∴BD⊥AC, 即EF⊥AC,
又∵正方体中面ABCD,EF面ABCD, ∴,
,AC,∴EF⊥平面,
又∵EF属于面EFG, ∴平面⊥平面EFG.                                                 ……8分(3)在正方体中显然有,
所以即为异面直线AC与A1B所成的角;
显然为正三角形,
所以,即异面直线AC与A1B所成的角为                                      ……12分
点评:立体几何问题,主要考查学生的空间想象能力和推理论证能力,要紧扣相应的判定定理和性质定理,定理中要求的条件要一一列举出来,缺一不可.求角时,要先证后求,并注意角的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

为两条不同的直线,是两个不同的平面,下列命题正确的是
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分12分)如右图,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中点。

(Ⅰ)求证:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分为12分)
在四棱锥中,底面,,,,的中点.

(I)证明:
(II)证明:平面
(III)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是三个不同的平面,则下列命题中真命题的是(  )
A.若,则B.若 ,则
C.若D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m、n是两条不同的直线,是两个不同的平面,则下列命题中正确的是
A.若m∥n,m,则n∥B.若⊥β,m∥,则m⊥β;
C.若⊥β,m⊥β,则m∥D.若m⊥n,m⊥,n⊥β,则⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图:在底面为直角梯形的四棱锥P-ABCD中,AD‖BC ,∠ABC=90°,PA⊥平面ABCD, PA="3," AD="2," AB=, BC=6.

(1)求证:BD⊥平面PAC
(2)求二面角B-PC-A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在直三棱柱中, AC=4,CB=2,AA1=2,
,E、F分别是的中点。

(1)证明:平面平面
(2)证明:平面ABE
(3)设P是BE的中点,求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将正方形沿对角线折成直二面角,有如下四个结论:
;     ②△是等边三角形;
与平面所成的角为60°; ④所成的角为60°.
其中错误的结论是(   )
A.①B.②C.③D.④

查看答案和解析>>

同步练习册答案