精英家教网 > 高中数学 > 题目详情
设m、n是两条不同的直线,是两个不同的平面,则下列命题中正确的是
A.若m∥n,m,则n∥B.若⊥β,m∥,则m⊥β;
C.若⊥β,m⊥β,则m∥D.若m⊥n,m⊥,n⊥β,则⊥β
D

试题分析:A不正确,m∥n,m?α,由于n可能在α内,故推不出n∥α;
对于B,由于当满足⊥β,m∥,则m与β可能斜交,因此错误
对于C,由于;⊥β,m⊥β,则m∥ ,也可能m在内,错误
对于D,则根据m⊥n,m⊥,n⊥β,则⊥β,符合面面垂直的判定定理,成立,故选D.
点评:本题考查线面,线线、面面的平行关系的判断,重点考查了空间的感知能力与空间中线面之间位置关系的判断能力.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,⊥平面的中点, 的中点,底面是菱形,对角线交于点

求证:(1)平面平面
(2)平面⊥平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
如图,在中,边上的高,,沿翻折,使得得几何体

(Ⅰ)求证:
(Ⅱ)求点D到面ABC的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCDQAD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=

(1)求证:平面PQB⊥平面PAD
(2)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,

(1)求证:平面A B1D1∥平面EFG;
(2)求证:平面AA1C⊥面EFG.
(3)求异面直线AC与A1B所成的角

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是异面直线,则(1)一定存在平面α,使mα,且n∥α;(2)一定存在平面α,使mα,且n⊥α;(3)一定存在平面γ,使得m,n到平面γ距离相等;(4)一定存在无数对平面α和β,使mα,nβ且α⊥β。上述4个命题中正确命题的序号是(   )
A.(1)(2)(3)B.(1)(2)(4)C.(1)(3)(4)D.(1)(4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,边长为a的正方体ABCD-A1B1C1D1中,E为CC1的中点.

(1)求直线A1E与平面BDD1B1所成的角的正弦值
(2)求点E到平面A1DB的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知表示两个互相垂直的平面,表示一对异面直线,则的一个充分条件是(  )
A.     B.
C.      D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为使互不重合的平面,是互不重合的直线,给出下列四个命题:
         
 
 
④若
其中正确命题的序号为         

查看答案和解析>>

同步练习册答案