精英家教网 > 高中数学 > 题目详情
(本小题共12分)
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCDQAD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=

(1)求证:平面PQB⊥平面PAD
(2)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值.
(1)∵AD // BCBC=ADQAD的中点,∴四边形BCDQ为平行四边形,∴CD // BQ.∵∠ADC=90°∴∠AQB=90°即QBAD.又∵平面PAD⊥平面ABCD 且平面PAD∩平面ABCD=AD,∴BQ⊥平面PAD.∵BQ平面PQB,∴平面PQB⊥平面PAD.  
(2)

试题分析:(1)∵AD // BCBC=ADQAD的中点,∴四边形BCDQ为平行四边形,∴CD // BQ.∵∠ADC=90°∴∠AQB=90°即QBAD
又∵平面PAD⊥平面ABCD 且平面PAD∩平面ABCD=AD, 
BQ⊥平面PAD
BQ平面PQB,∴平面PQB⊥平面PAD.  
(2)∵PA=PDQAD的中点, ∴PQAD
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD
PQ⊥平面ABCD
如图,以Q为原点建立空间直角坐标系.
则平面BQC的法向量为

,则

, ∴    
在平面MBQ中,
∴ 平面MBQ法向量为
∵二面角M-BQ-C为30,

点评:高考中常考查空间中平行关系与垂直关系的证明以及几何体体积的计算,这是高考的重点内容.证明的关键是熟练掌握并灵活运用相关的判定定理与性质定理.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

选修4-1:几何证明选讲
如图,在等腰梯形ABCD中,对角线AC⊥BD,且相交于点O ,E是AB边的中点,EO的延长线交CD于F.

(1)求证:EF⊥CD;
(2)若∠ABD=30°,求证

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在三棱锥中,, 点分别在棱上,且

(Ⅰ)求证:平面PAC
(Ⅱ)当的中点时,求与平面所成的角的正弦值;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图,在底面是直角梯形的四棱锥S-ABCD中, 


(1)求四棱锥S-ABCD的体积;
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分为12分)
在四棱锥中,底面,,,,的中点.

(I)证明:
(II)证明:平面
(III)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,四棱锥S—ABCD的底面为正方形,SD底面ABCD,则下列结论中正确的是                (把正确的答案都填上)

(1)AC⊥SB
(2)AB∥平面SCD
(3)SA与平面SBD所成的角等于SC与平面SBD所成的角
(4)AB与SC所成的角等于DC与SA所成的角

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m、n是两条不同的直线,是两个不同的平面,则下列命题中正确的是
A.若m∥n,m,则n∥B.若⊥β,m∥,则m⊥β;
C.若⊥β,m⊥β,则m∥D.若m⊥n,m⊥,n⊥β,则⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知四棱锥平面
,底面为直角梯形,
分别是的中点.

(1)求证:// 平面
(2)求截面与底面所成二面角的大小;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图:正方体中,所成的角为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案