精英家教网 > 高中数学 > 题目详情
(本小题满分12分)已知四棱锥平面
,底面为直角梯形,
分别是的中点.

(1)求证:// 平面
(2)求截面与底面所成二面角的大小;
(3)求点到平面的距离.
(1)只需证//平面;(2);(3)

试题分析:以为原点,以分别为建立空间直角坐标系
分别是的中点,
可得:


………2分  
设平面的的法向量为
则有:
,则,      ……………3分
,又平面
//平面                              ……………4分
(2)设平面的的法向量为,又
则有:
,则,        …………6分
为平面的法向量,∴,又截面与底面所成二面角为锐二面角,
∴截面与底面所成二面角的大小为        …………8分
(3)∵
∴所求的距离…12分
点评:综合法求二面角,往往需要作出平面角,这是几何中一大难点,而用向量法求解二面角无需作出二面角的平面角,只需求出平面的法向量,经过简单运算即可,从而体现了空间向量的巨大作用.二面角的向量求法: ①若AB、CD分别是二面的两个半平面内与棱垂直的异面直线,则二面角的大小就是向量的夹角; ②设分别是二面角的两个面α,β的法向量,则向量的夹角(或其补角)的大小就是二面角的平面角的大小。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD是正方形,PB^平面ABCD,MA^平面ABCD,PB=AB=2MA.

求证:(1)平面AMD∥平面BPC;(2)平面PMD^平面PBD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCDQAD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=

(1)求证:平面PQB⊥平面PAD
(2)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是异面直线,则(1)一定存在平面α,使mα,且n∥α;(2)一定存在平面α,使mα,且n⊥α;(3)一定存在平面γ,使得m,n到平面γ距离相等;(4)一定存在无数对平面α和β,使mα,nβ且α⊥β。上述4个命题中正确命题的序号是(   )
A.(1)(2)(3)B.(1)(2)(4)C.(1)(3)(4)D.(1)(4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,边长为a的正方体ABCD-A1B1C1D1中,E为CC1的中点.

(1)求直线A1E与平面BDD1B1所成的角的正弦值
(2)求点E到平面A1DB的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCDEPC的中点,作PB于点F

(I) 证明: PA∥平面EDB
(II) 证明:PB⊥平面EFD

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知表示两个互相垂直的平面,表示一对异面直线,则的一个充分条件是(  )
A.     B.
C.      D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个不同的平面和两条不重合的直线,有下列四个命题:
①若//,,则;         ②若,,则//;
③若,,则;       ④若//,//,则//.
其中正确命题的个数是
A.1个B.2个
C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分) 如图四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底边长均为a,
且∠A1AD=∠A1AB=60°。

①求证四棱锥 A1-ABCD为正四棱锥;
②求侧棱AA1到截面B1BDD1的距离;
③求侧面A1ABB1与截面B1BDD1的锐二面角大小。

查看答案和解析>>

同步练习册答案