精英家教网 > 高中数学 > 题目详情
为使互不重合的平面,是互不重合的直线,给出下列四个命题:
         
 
 
④若
其中正确命题的序号为         

试题分析:根据线面平行的判定定理,面面平行的判定定理,面面平行的性质定理,及面面垂直的性质定理,对题目中的四个结论逐一进行分析,即可得到答案.
解:当m∥n,n?α,,则m?α也可能成立,故①错误;
当m?α,n?α,m∥β,n∥β,m与n相交时,α∥β,但m与n平行时,α与β不一定平行,故②错误;
若α∥β,m?α,n?β,则m与n可能平行也可能异面,故③错误;
若α⊥β,α∩β=m,n?α,n⊥m,由面面平行的性质,易得n⊥β,故④正确
故答案为:④
点评:熟练掌握空间线与线,线与面,面与面之间的关系的判定方法及性质定理,是解答本题的关键,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设m、n是两条不同的直线,是两个不同的平面,则下列命题中正确的是
A.若m∥n,m,则n∥B.若⊥β,m∥,则m⊥β;
C.若⊥β,m⊥β,则m∥D.若m⊥n,m⊥,n⊥β,则⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知球面上有四点P,A,B,C,满足PA,PB,PC两两垂直,PA=3,PB=4,PC=5,则该球的表面积是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图:正方体中,所成的角为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将正方形沿对角线折成直二面角,有如下四个结论:
;     ②△是等边三角形;
与平面所成的角为60°; ④所成的角为60°.
其中错误的结论是(   )
A.①B.②C.③D.④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面ABCD是一直角梯形,,,且PA=AD=DC=AB=1.

(1)证明:平面平面
(2)设AB,PA,BC的中点依次为M、N、T,求证:PB∥平面MNT
(3)求异面直线所成角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在四棱锥中,的中点.

求证:(1)∥平面
(2)⊥平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是三个互不重合的平面,是一条直线,下列命题中正确命题是(   )
A.若,则B.若上有两个点到的距离相等,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正三棱锥的侧面与底面所成的角的余弦值为,则侧棱与底面所成角的正弦值为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案