精英家教网 > 高中数学 > 题目详情

图是某市日至日的空气质量指数趋势图,空气质量指数()小于表示空气质量优良,空气质量指数大于表示空气重度污染,某人随机选择日至日中的某一天到达该市,并停留天.

(1)求此人到达当日空气质量重度污染的概率;
(2)设是此人停留期间空气重度污染的天数,求的分布列与数学期望.

(1);(2)详见解析.

解析试题分析:(1)从图中找出空气污染严重的天数,再利用古典概型的概率计算公式计算相应事件的概率;(2)先列举出随机变量的可能取值,并从图中找出在可能取值下相应的概率,然后列举出相应的概率分布列,并求出随机变量的数学期望.
试题解析:(1)设表示事件“此人于日到达该市”().
依题意知,.
(1)设为事件“此人到达当日空气质量重度污染”,则
所以.
即此人到达当日空气质量重度污染的概率为
(2)由题意可知,的所有可能取值为




(或).
所以的分布列为











的期望.
考点:1.古典概型;2.离散型随机变量的分布列与数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

袋中装有若干个质地均匀大小一致的红球和白球,白球数量是红球数量的两倍.每次从袋中摸出一个球然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直至第5次摸球后结束.
(1)求摸球3次就停止的事件发生的概率;
(2)记摸到红球的次数为,求随机变量的分布列及其期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市公租房的房源位于三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:
(1)恰有2人申请片区房源的概率;
(2)申请的房源所在片区的个数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校举行中学生“日常生活小常识”知识比赛,比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行;每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为,且相互间没有影响.
(1)求选手甲进入复赛的概率;
(2)设选手甲在初赛中答题的个数为,试求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个口袋中有个白球和个红球(,且),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖.
(1)试用含的代数式表示一次摸球中奖的概率
(2)若,求三次摸球恰有一次中奖的概率;
(3)记三次摸球恰有一次中奖的概率为,当为何值时,取最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位从一所学校招收某类特殊人才.对位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:

 

一般
良好
优秀
一般



良好



优秀



例如表中运动协调能力良好且逻辑思维能力一般的学生是人.由于部分数据丢失,只知道从这位参加测试的学生中随机抽取一位,抽到逻辑思维能力优秀的学生的概率为
(1)求的值;
(2)从运动协调能力为优秀的学生中任意抽取位,求其中至少有一位逻辑思维能力优秀的学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在高中“自选模块”考试中,某考场的每位同学都选了一道数学题,第一小组选《数学史与不等式选讲》的有1人,选《矩阵变换和坐标系与参数方程》的有5人,第二小组选《数学史与不等式选讲》的有2人,选《矩阵变换和坐标系与参数方程》的有4人,现从第一、第二两小组各任选2人分析得分情况.
(1)求选出的4人均为选《矩阵变换和坐标系与参数方程》的概率;
(2)设X为选出的4个人中选《数学史与不等式选讲》的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两名射手各打了10发子弹,其中甲击中环数与次数如下表

环数
5
6
7
8
9
10
次数
1
1
1
1
2
4
乙射击的概率分布列如表
环数
7
8
9
10
概率
0.2
0.3
p
0.1
(1)若甲,乙两人各打一枪,求共击中18环的概率及p的值;
(2)比较甲,乙两人射击水平的优劣.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下表中有三个游戏规则,袋子中分别装有大小相同的球,从袋子中取球,分别计算甲获胜的概率,说明哪个游戏是公平的?

游戏1
 
游戏2
 
游戏3
 
1个红球和1个白球
 
2个红球和2个白球
 
3个红球和1个白球
 
取1个球
 
取1个球,再取1个球
 
取1个球,再取1个球
 
取出的球是红球→甲胜
 
取出的两个球同色→甲胜
 
取出的两个球同色→甲胜
 
取出的球是白球→乙胜
 
取出的两个球不同色→乙胜
 
取出的两个球不同色→乙胜
 

查看答案和解析>>

同步练习册答案