【题目】已知以点为圆心的圆过原点.
(1)设直线与圆交于点,若,求圆的方程;
(2)在(1)的条件下,设,且分别是直线和圆上的动点,求的最大值及此时点的坐标.
【答案】(1);(2),.
【解析】
试题分析:(1),所以原点在的中垂线上.利用两条直线斜率乘积等于,解得或,经验证不符合题意,所以,圆的方程为;(2)在三角形中,两边之差小于第三边,故,又三点共线时最大,所以的最大值为.线的方程为与联立求得交点为.
试题解析:
(1)∵,所以,则原点在的中垂线上.
设的中点为,则,
∴三点共线.
∵直线的方程是,∴直线的斜率,解得或,
∴圆心为或,
∴圆的方程为或.
由于当圆方程为时,圆心到直线的距离,
此时不满足直线与圆相交,故舍去.
∴圆的方程为.
(2)在三角形中,两边之差小于第三边,故,
又三点共线时最大,
所以的最大值为.
∵,,∴直线的方程为,
∴直线与直线的交点的坐标为.
科目:高中数学 来源: 题型:
【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).
(1)求的解析式及单调递减区间;
(2)是否存在常数,使得对于定义域内的任意,恒成立?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】重庆一中开展了丰富多彩的社团文化活动,甲,乙,丙三位同学在被问到是否参加过街舞社,动漫社,器乐社这三个社团时,
甲说:我参加过的社团比乙多,但没有参加过动漫社;
乙说:我没有参加过器乐社;
丙说:我们三个人都参加过同一个社团,由此判断乙参加过的社团为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点.如果x1+x2=6, 那么|AB|=( )
A. 6 B. 8
C. 9 D. 10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一个几何体的三视图如图所示.
(1)求此几何体的表面积;
(2)如果点在正视图中所示位置:为所在线段中点,为顶点,求在几何体表面上,从点到点的最短路径的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为.
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
(1)为了能选拔出最优秀的学生,该高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(2)在(1)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组至少有一名学生被考官A面试的概率?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com