精英家教网 > 高中数学 > 题目详情
7.点A(6,0)与点B(-2,0)的距离是(  )
A.6B.8C.$2\sqrt{10}$D.7

分析 利用向量坐标运算性质、向量的模的计算公式即可得出.

解答 解:$\overrightarrow{AB}$=(-8,0),
∴$|\overrightarrow{AB}|$=$\sqrt{(-8)^{2}+0}$=8.
故选:B.

点评 本题考查了向量坐标运算性质、向量的模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1+lnx}{x}$.
(1)求函数f(x)的单调区间;
(2)若g(x)=xf(x)+mx在区间(0,e]上的最大值为-3,求m的值;
(3)若x≥1时,有不等式f(x)≥$\frac{k}{x+1}$恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(a+c)(sinA-sinC)=(b+c)sinB.
(1)求A角的大小;
(2)若a=3,S△ABC=$\frac{3\sqrt{3}}{4}$,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-7(x<-1)}\\{\sqrt{x+1}(x≥-1)}\end{array}\right.$,若f(t)<1,则使函数g(t)=t+$\frac{1}{at}$为减函数的a的取值范围是(  )
A.(-∞,$\frac{1}{9}$]B.(0,$\frac{1}{9}$)C.(0,$\frac{1}{9}$]D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}的前n项和为Sn,S7=49,a4和a8的等差中项为11.
(I)求an及Sn
(Ⅱ)证明:当n≥2时,有$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}<2$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若a=log36,b=log26,c=log912,则(  )
A.a>b>cB.a>c>bC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直线${l_1}:ax-2y=2a-4,{l_2}:2x+{a^2}y=2{a^2}+4({0<a<2})$与两坐标轴的正半轴围成四边形,当a为何值时,围成的四边形面积最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设F为抛物线C:y2=4x的焦点,过F且倾斜角为60°的直线交抛物线C于A,B两点,O为坐标原点,则△OAB的面积为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某校早上7:40开始上课,假设该校学生小张与小王在早上7:10~7:30之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为$\frac{9}{32}$.(用数字作答)

查看答案和解析>>

同步练习册答案