精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\frac{1+lnx}{x}$.
(1)求函数f(x)的单调区间;
(2)若g(x)=xf(x)+mx在区间(0,e]上的最大值为-3,求m的值;
(3)若x≥1时,有不等式f(x)≥$\frac{k}{x+1}$恒成立,求实数k的取值范围.

分析 (1)求出函数的定义域,函数的导数,求出极值点,判断导函数符号,然后求解单调区间.
(2)求出$g'(x)=m+\frac{1}{x}$,x∈(0,e],通过①若m≥0,②若m<0,判断函数的单调性,求解函数的最值,然后求m.
(3)利用x≥1时,$f(x)≥\frac{k}{x+1}$恒成立,分离变量,构造函数$h(x)=lnx+\frac{lnx}{x}+\frac{1}{x}+1$,利用函数的导数,求解函数的最值,推出结果即可.

解答 解:(1)易知f(x)定义域为(0,+∞),$f'(x)=-\frac{lnx}{x^2}$,令f'(x)=0,得x=1.
当0<x<1时,f'(x)>0;当x>1时,f'(x)<0.
∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数.
(2)∵g(x)=1+lnx+mx,$g'(x)=m+\frac{1}{x}$,x∈(0,e],
①若m≥0,则g'(x)≥0,从而g(x)在(0,e]上是增函数,∴g(x)max=g(e)=me+2≥0,不合题意.
②若m<0,则由g'(x)>0,即$0<x<-\frac{1}{m}$,若$-\frac{1}{m}≥e$,g(x)在(0,e]上是增函数,
由①知不合题意.
由g'(x)<0,即$-\frac{1}{m}<x≤e$.
从而g(x)在$(0,-\frac{1}{m})$上是增函数,在$(-\frac{1}{m},e]$为减函数,
∴$g{(x)_{max}}=g(-\frac{1}{m})=ln(-\frac{1}{m})$,令ln($-\frac{1}{m}$)=-3,所以m=-e3
∵$-\frac{1}{m}=\frac{1}{e^3}<e$,∴所求的m=-e3
(3)∵x≥1时,$f(x)≥\frac{k}{x+1}$恒成立,∴k≤(x+1)f(x)=lnx+$\frac{lnx}{x}$+$\frac{1}{x}$+1,
令$h(x)=lnx+\frac{lnx}{x}+\frac{1}{x}+1$,
∴$h'(x)=\frac{x-lnx}{x^2}$恒大于0,
∴h(x)在[1,+∞)为增函数,
∴h(x)min=h(1)=2,∴k≤2.

点评 本题考查函数的导数的综合应用,函数的最值以及函数的单调性的判断,构造法的应用,考查转化思想以及分类讨论思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=loga(x+2)+loga(3-x),其中0<a<1.
(1)求函数f(x)的定义域;
(2)若函数f(x)的最小值为-4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}的首项和公差都为2,且a1、a8分别为等比数列{bn}的第一、第四项.
(1)求数列{an}、{bn}的通项公式;
(2)设cn=$\frac{4}{{({{log}_2}{b_{n+1}}){a_n}}}$,求{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,一船以每小时20km的速度向东航行,船在A处看到一个灯塔B在北偏东60°方向,行驶4小时后,船到达C处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为$40\sqrt{2}$km.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|x2<1},B=x|2x>$\sqrt{2}\}$,则A∩B=(  )
A.$(-\frac{1}{2},\frac{1}{2})$B.$(0,\frac{1}{2})$C.$(\frac{1}{2},1)$D.$(-\frac{1}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=(x+a)lnx,g(x)=$\frac{{2{x^2}}}{e^x}$,已知曲线y=f(x)在x=1处的切线过点(2,3).
(1)求实数a的值.
(2)是否存在自然数k,使得函数y=f(x)-g(x)在(k,k+1)内存在唯一的零点?如果存在,求出k;如果不存在,请说明理由.
(3)设函数h(x)=min{f(x),g(x)},(其中min{p,q}表示p,q中的较小值),对于实数m,?x0∈(0,+∞),使得h(x0)≥m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A,B,C的对边分别为a,b,c,若$\frac{a-c}{b}=\frac{a-b}{a+c}$,则角C等于(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.数列{an}的前n项和为Sn,且a1=1,Sn+1=3Sn+n+1,n∈N*,则{an}的通项公式an=$\frac{{3}^{n}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.点A(6,0)与点B(-2,0)的距离是(  )
A.6B.8C.$2\sqrt{10}$D.7

查看答案和解析>>

同步练习册答案