分析 (1)由等差数列通项公式可知:an=2+(n-1)2=2n,分别求得a1和a8,则由等比数列性质可知:${q^3}=\frac{b_4}{b_1}=8$,根据等比数列通项公式求得{bn}的通项公式;
(2)由(1)${c_n}=\frac{4}{{({{log}_2}{b_{n+1}}){a_n}}}=\frac{2}{n•(n+1)}=2(\frac{1}{n}-\frac{1}{n+1})$,采用“裂项法”即可求得数列{cn}的前n项和Sn.
解答 解:(1)由等差数列通项公式可知:an=2+(n-1)2=2n,
当n=1时,2b1=a1=2,b4=a8=16,…3
设等比数列{bn}的公比为q,则${q^3}=\frac{b_4}{b_1}=8$,…4
∴q=2,…5
∴${b_n}={2^n}$ …6
(2)由(1)可知:log2bn+1=n…7
∴${c_n}=\frac{4}{{({{log}_2}{b_{n+1}}){a_n}}}=\frac{2}{n•(n+1)}=2(\frac{1}{n}-\frac{1}{n+1})$…9
∴${S_n}=2(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1})=\frac{2n}{n+1}$,
∴{cn}的前n项和Sn,Sn=$\frac{2n}{n+1}$.…12
点评 本题考查等比数列及等差数列通项公式,等比数列性质,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -4 | C. | 0 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com