精英家教网 > 高中数学 > 题目详情
5.设定义在R上的函数f(x)对任意实数x,y,满足f(x)+f(y)=f(x+y),且f(3)=4,则f(0)+f(-3)的值为(  )
A.-2B.-4C.0D.4

分析 由f(x)+f(y)=f(x+y),令x=y=0,可求得f(0)=0,再令y=-x,可判定函数f(x)为奇函数,又f(3)=4,于是可求得f(0)+f(-3)的值.

解答 解:因为f(x)+f(y)=f(x+y),
令x=y=0,
则f(0)+f(0)=f(0+0)=f(0),
所以,f(0)=0;
再令y=-x,
则f(x)+f(-x)=f(0)=0,
所以,f(-x)=-f(x),
所以,函数f(x)为奇函数.
又f(3)=4,
所以,f(-3)=-f(3)=-4,
所以,f(0)+f(-3)=-4.
故选:B.

点评 本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f(x)为奇函数是关键,考查推理与运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.完成下面问题:
(1)求直线2x+5y-20=0分别在x轴、y轴上的截距;
(2)求平行于直线x-y+2=0,且与它的距离为$\sqrt{2}$的直线的方程;
(3)已知两点M(7,-1),N(-5,4),求线段MN的垂直平分线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆心为(1,2)的圆C与直线l:3x-4y-5=0相切.
(1)求圆C的方程;
(2)求过点P(3,5)与圆C相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=loga(x+2)+loga(3-x),其中0<a<1.
(1)求函数f(x)的定义域;
(2)若函数f(x)的最小值为-4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数y=f(x)是y=3x的反函数,则f(3)的值是(  )
A.0B.1C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.不等式log${\;}_{\frac{1}{2}}}$(2x-1)<log${\;}_{\frac{1}{2}}}$(-x+5)的解集为(2,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2x2-4x+a,g(x)=logax(a>0且a≠1).
(1)若函数f(x)在[-1,3m]上不具有单调性,求实数m的取值范围;
(2)若f(1)=g(1)
①求实数a的值;
②设t1=$\frac{1}{2}$f(x),t2=g(x),t3=2x,当x∈(0,1)时,试比较t1,t2,t3的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}的首项和公差都为2,且a1、a8分别为等比数列{bn}的第一、第四项.
(1)求数列{an}、{bn}的通项公式;
(2)设cn=$\frac{4}{{({{log}_2}{b_{n+1}}){a_n}}}$,求{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A,B,C的对边分别为a,b,c,若$\frac{a-c}{b}=\frac{a-b}{a+c}$,则角C等于(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{8}$

查看答案和解析>>

同步练习册答案