精英家教网 > 高中数学 > 题目详情
已知f(α)=
sin(
π
2
+α)+3sin(-π-α)
2cos(
11π
2
-α)-cos(5π-α)

(1)化简f(α);               
(2)已知tanα=3,求f(α)的值.
分析:(1)利用诱导公式可得sin(
π
2
+α)
=cosα,sin(-π-α)=sinα,cos(
11π
2
-α)
=-sinα,cos(5π-α)=-cosα,进而化简化简f(α);
(2)由tanα=3,将(1)中化简所得式子,分子分母同除以cosα(弦化切)后,代入可得答案.
解答:解:(1)f(α)=
sin(
π
2
+α)+3sin(-π-α)
2cos(
11π
2
-α)-cos(5π-α)
=
cosα+3sinα
-2sinα+cosα

(2)∵tanα=3
∴f(α)=
cosα+3sinα
-2sinα+cosα
=
1+3tanα
-2tanα+1
=
10
-5
=-2
点评:本题考查的知识点是诱导公式,同角三角函数间的基本关系,(1)的关键是理解“奇变偶不变,符号看象限“的原则,(2)的关键是掌握“弦化切“的技巧.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(α)=
sin(-α-
2
)cos(
2
-α)tan2(π-α)
cos(
π
2
-α)sin(
π
2
+α)

(1)化简f(α)
(2)若sinα是方程5x2-7x-6=0的根,且α是第三象限的角,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(α)=
sin(
π
2
-α)cos(2π-α)tan(-α+π)
tan(π+α)sin(-π-α)

(1)化简f(α);(2)若cos(α-
π
2
)=
1
5
,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(α)=
sin(π-α)•cos(2π-α)•tan(-π-α)
sin(-π-α)

(1)求f(α);  
(2)若α是第三象限角,且cos(α-
2
)=
1
5
,则f(α)的值;
(3)若α=-1860°,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(α)=
sin(2π-α)cos(π+α)cos(
π
2
+α)cos(
11π
2
-α)
cos(π-α)sin(3π-α)sin(-π-α)sin(
2
+α)

(Ⅰ)化简f(α);
(Ⅱ)若α是第三象限角,且cos(
2
-α)=
1
5
,求f(α)的值.

查看答案和解析>>

同步练习册答案