精英家教网 > 高中数学 > 题目详情

中,分别是角A,B,C的对边,且满足
(1)求角B的大小;
(2)若最大边的边长为,且,求最小边长.

(1);(2)

解析试题分析:(1)因为在中,分别是角A,B,C的对边,且满足,所以通过化简可得一个关于的等式.再结合余弦定理即可求得结论.
(2)由(1)即最大边的边长为可得边最大,又根据,可得.所以可知边最小.由于已知一边一角,另两边存在等量关系,所以利用余弦定理即可求得最小边的值.本小题利用正弦定理同样是可以的.
试题解析:(Ⅰ)由整理得
, ∴
,∴.            6分
(2)∵,∴最长边为, ∵,∴
为最小边,由余弦定理得,解得
,即最小边长为 .          12分
考点:1.正弦定理.2.余弦定理.3.解三角形的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的图像经过点
(1)求的值;
(2)在中,所对的边分别为,若,且.求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角ABC对应的边分别是 abc.已知cos 2A-3cos(BC)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5b=5,求sin Bsin C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期和对称轴的方程;
(2)设的角的对边分别为,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,且,.
(1)求的值;
(2)若,求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角的对边分别为.设向量
(1)若,求角;(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

座落于我市红梅公园边的天宁宝塔堪称中华之最,也堪称佛塔世界之最.如图,已知天宁宝塔AB高度为150米,某大楼CD高度为90米,从大楼CD顶部C看天宁宝塔AB的张角,求天宁宝塔AB与大楼CD底部之间的距离BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数
(1)求的最大值,并求取最大值时的取值集合;
(2)已知 分别为内角的对边,且成等比数列,角为锐角,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位有三个工作点,需要建立一个公共无线网络发射点,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为.假定四点在同一平面内.
(Ⅰ)求的大小;
(Ⅱ)求点到直线的距

查看答案和解析>>

同步练习册答案