精英家教网 > 高中数学 > 题目详情
9.设f(x)是定义在R上的最小正周期为$\frac{7π}{6}$的函数,且在$[-\frac{5π}{6},\frac{π}{3})$上$f(x)=\left\{\begin{array}{l}sinx,x∈[-\frac{5π}{6},0)\\ cosx+a,x∈[0,\frac{π}{3}]\end{array}\right.$,则a=-1,$f(-\frac{16π}{3})$=$-\frac{{\sqrt{3}}}{2}$.

分析 根据函数的周期,可得$f(\frac{π}{3})=f(-\frac{5π}{6})$,进而得到a值,将x=$-\frac{16π}{3}$代入可得答案.

解答 解:由于f(x)的周期为$\frac{7π}{6}$,则$f(\frac{π}{3})=f(-\frac{5π}{6})$,即$cos\frac{π}{3}+a=sin(-\frac{5π}{6})$,
解得a=-1. 
此时$f(-\frac{16π}{3})=f(-\frac{2π}{3})=sin(-\frac{2π}{3})=-\frac{{\sqrt{3}}}{2}$.
故答案为:-1;$-\frac{{\sqrt{3}}}{2}$.

点评 本题考查的知识点是分段函数的应用,函数求值,函数的周期性,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\frac{{{ln|x}|}}{{{e^x}-{e^{-x}}}}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a2-a<2,且a∈N*,求函数f(x)=x+$\frac{2a}{x}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.$f(x)={log_{\frac{1}{2}}}(3-2x-{x^2})$的增区间为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}的首项a1=1,前n项和为Sn,且满足2an+1+Sn=2,则满足$\frac{1001}{1000}<\frac{{{S_{2n}}}}{S_n}<\frac{11}{10}$的n的最大值是(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数$f(x)=\frac{1}{3}{x^3}+a{x^2}+x+1$,
(1)当$a=-\frac{5}{3},D=[-1,3]$时,求函数f(x)在D上的上界的最小值;
(2)记函数g(x)=f′(x),若函数$y=g[{(\frac{1}{2})^x}]$在区间D=[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示,正方形BCDE的边长为a,已知$AB=\sqrt{3}BC$,将△ABE沿BE边折起,折起后A点在平面BCDE上的射影为D点,则翻折后的几何体中有如下描述:
①AB与DE所成角的正切值为$\sqrt{2}$;
②AB∥CE;
③${V_{B-ACE}}=\frac{1}{12}{a^3}$;
④平面ABC⊥平面ADC.其中正确的命题序号为①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设$a=\sqrt{3},b=\sqrt{15}-\sqrt{7},c=\sqrt{11}-\sqrt{3}$,那么a,b,c的大小关系是(  )
A.a>b>cB.a>c>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面坐xOy中,双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的虚轴长是6,渐近线方程是y=±$\frac{3}{4}x$.

查看答案和解析>>

同步练习册答案