精英家教网 > 高中数学 > 题目详情
17.$f(x)={log_{\frac{1}{2}}}(3-2x-{x^2})$的增区间为(-1,1).

分析 由对数型复合函数的真数大于0求出函数的定义域,进一步求出内函数的减区间得答案.

解答 解:由3-2x-x2>0,得x2+2x-3<0,解得-3<x<1.
当x∈(-1,1)时,内函数t=-x2-2x+3为减函数,而外函数y=$lo{g}_{\frac{1}{2}}t$为减函数,
由复合函数的单调性可得,$f(x)={log_{\frac{1}{2}}}(3-2x-{x^2})$的增区间为(-1,1).
故答案为:(-1,1).

点评 本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在极坐标系中,曲线C1:ρ=2cosθ,曲线 ${C_2}:ρ{sin^2}θ=4cosθ$.以极点为坐标原点,极轴为x轴正半轴建立直角坐标系xOy,曲线C的参数方程为$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数).
(Ⅰ)求C1,C2的直角坐标方程;
(Ⅱ)C与C1,C2交于不同四点,这四点在C上的排列顺次为P,Q,R,S,求||PQ|-|RS||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设△ABC的内角A,B,C所对的边分别为a,b,c,若a2+b2<c2,则△ABC的形状是(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,直线y=x+$\sqrt{6}$与以原点为圆心,以椭圆C的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m与椭圆C相较于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.双曲线y2-2x2=8的渐近线方程为$y=±\sqrt{2}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.点P为直线$y=\frac{3}{4}x$上任一点,F1(-5,0),F2(5,0),则下列结论正确的是(  )
A.||PF1|-|PF2||>8B.||PF1|-|PF2||=8C.||PF1|-|PF2||<8D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)是定义在R上的最小正周期为$\frac{7π}{6}$的函数,且在$[-\frac{5π}{6},\frac{π}{3})$上$f(x)=\left\{\begin{array}{l}sinx,x∈[-\frac{5π}{6},0)\\ cosx+a,x∈[0,\frac{π}{3}]\end{array}\right.$,则a=-1,$f(-\frac{16π}{3})$=$-\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.2016年9 月4日至5日在中国杭州召开了G20峰会,会后某10国集团领导人站成前排3人后排7人准备请摄影师给他们拍照,现摄影师打算从后排7人中任意抽2人调整到前排,使每排各5人.若调整过程中另外8人的前后左右相对顺序不变,则不同调整方法的总数是(  )
A.$C_7^2A_3^2$B.$C_7^2A_5^5$C.$C_7^2A_5^2$D.$C_7^2A_4^2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC中,A(1,3),BC边所在的直线方程为y-1=0,AB边上的中线所在的直线方程为x-3y+4=0.
(Ⅰ)求B,C点的坐标;
(Ⅱ)求△ABC的外接圆方程.

查看答案和解析>>

同步练习册答案