精英家教网 > 高中数学 > 题目详情
如图,圆心在原点、半径为R的圆交x轴正半轴于点A,P、Q是圆上的两个动点,它们同时从点A出发沿圆周做匀速运动.OP逆时针方向每秒转,OQ顺时针方向每秒转.试求P、Q出发后第五次相遇的位置及各自走过的弧长.

解:易知,动点P、Q由第k次相遇到第k+1次相遇所走过的弧长之和恰好等于圆的一个周长2πR,因此当他们第五次相遇时走过的弧长之和为10πR.设动点P、Q自A点出发到第五次相遇走过的时间为t秒,走过的弧长分别为l1、l2,则l1=tR,l2=|-|·tR=tR.因此l1+l2=tR+tR=10πR,所以t==20(秒),l1=πR,l2=πR.由此可知,OP转过的角度为π=6π+,所以动点P、Q第五次相遇处点M的坐标为(Rcos,Rsin),即(),P、Q走过的弧长分别为R和R.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,从椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
上一点P向x轴作垂线,垂足恰为左焦点F1,又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且AB∥OP,|F1A|=
10
+
5

(1)求椭圆E的方程.
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点C,D,且
OC
OD
?若存在,写出该圆的方程,并求|CD|的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄浦区一模)如图所示,点A、B是单位圆(圆心在原点,半径为1的圆)上两点,OA、OB与x轴正半轴所成的角分别为α和-β.
OA
=(cosα,sinα)
OB
=(cos(-β),sin(-β))
,用两种方法计算
OA
OB
后,利用等量代换可以得到的等式是
cos(α+β)=cosαcosβ-sinαsinβ
cos(α+β)=cosαcosβ-sinαsinβ

查看答案和解析>>

科目:高中数学 来源:2010年上海市黄浦区高考数学一模试卷(理科)(解析版) 题型:解答题

如图所示,点A、B是单位圆(圆心在原点,半径为1的圆)上两点,OA、OB与x轴正半轴所成的角分别为α和-β.,用两种方法计算后,利用等量代换可以得到的等式是   

查看答案和解析>>

科目:高中数学 来源:2010年上海市黄浦区高考数学一模试卷(文科)(解析版) 题型:解答题

如图所示,点A、B是单位圆(圆心在原点,半径为1的圆)上两点,OA、OB与x轴正半轴所成的角分别为α和-β.,用两种方法计算后,利用等量代换可以得到的等式是   

查看答案和解析>>

同步练习册答案