精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,直线l的参数方程为t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线l与曲线C交于AB两个不同的点.

1)求曲线C的直角坐标方程;

2)若点P为直线lx轴的交点,求的取值范围.

【答案】(1)(2)

【解析】

1)直接利用转换关系将极坐标方程转化为直角坐标方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,进一步利用韦达定理和三角函数恒等变换求出结论.

1

曲线C的直角坐标方程为

2)将直线的参数方程代入曲线C的直角坐标方程可得

由题意知,所以

,所以

设这个方程的两个实根分别为,则

所以同号,由参数t的几何意义可得:

,

所以

因为,所以

所以的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程

(2)过点作直线的垂线交曲线两点(轴上方),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的焦距为,斜率为的直线与椭圆交于两点,若线段的中点为,且直线的斜率为.

(1)求椭圆的方程;

(2)若过左焦点斜率为的直线与椭圆交于点 为椭圆上一点,且满足,问:是否为定值?若是,求出此定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,的导函数.

(1)求证:上存在唯一零点;

(2)求证:有且仅有两个不同的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前n项和为,已知,,.

(1)证明:为等比数列,求出的通项公式;

(2)若,求的前n项和,并判断是否存在正整数n使得成立?若存在求出所有n值;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,墙上有一壁画,最高点离地面4米,最低点离地面2米,观察者从距离墙米,离地面高米的处观赏该壁画,设观赏视角

(1)若问:观察者离墙多远时,视角最大?

(2)若变化时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若是函数的极值点,求的单调区间;

2)当时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把编号为12345的五个大小、形状相同的小球,随机放入编号为12345的五个盒子里.每个盒子里放入一个小球.

1)求恰有两个球的编号与盒子的编号相同的概率;

2)设恰有个小球的编号与盒子编号相同,求随机变量的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角梯形中, 分别为的中点,以为圆心, 为半径的圆交,点在弧上运动(如图).若,其中,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案