精英家教网 > 高中数学 > 题目详情
函数f(x)=
3
sin(2x-
π
4
)(x∈R)的最小正周期为
 
分析:由已知中函数的解析式f(x)=
3
sin(2x-
π
4
)(x∈R),我们可以计算出ω=2,代入T=
ω
,即可求出函数的最小正周期.
解答:解:由已知中f(x)=
3
sin(2x-
π
4
)(x∈R)得
ω=2
则T=
ω

故答案为:π
点评:本题考查的知识点是三角函数的周期性及其求法,其中根据已知中函数的解析式求出ω的值,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=3sin(2x+
π
3
),给出四个命题:①它的周期是π;②它的图象关于直线x=
π
12
成轴对称;③它的图象关于点(
π
3
,0)成中心对称;④它在区间[-
12
π
12
]上是增函数.其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为得到函数f(x)=3sin(2x+
π
6
)
的图象,可将y=3sinx的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济宁一模)已知函数f(x)=
3
sin(x-?)cos(x-?)-cos2(x-?)+
1
2
(0≤?≤
π
2
)为偶函数.
(I)求函数的最小正周期及单调减区间;
(II)把函数的图象向右平移
π
6
个单位(纵坐标不变),得到函数g(x)的图象,求函数g(x)的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•成都二模)已知函数f(x)=
3
sinωxcosωx-cos2ωx+
1
2
(ω>0,x∈R)的最小正周期为
π
2

(1)求f(
3
)的值,并写出函数f(x)的图象的对称中心的坐标;
(2)当x∈[
π
3
π
2
]时,求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sin(2x-
π
6
)和g(x)=2cos(2x+φ)的图象的对称轴完全相同,其中φ∈(0,
π
2
),则φ=
 

查看答案和解析>>

同步练习册答案