£¨2012•»ÆÆÖÇøһģ£©ÒÑÖªÁ½µãA£¨-1£¬0£©¡¢B£¨1£¬0£©£¬µãP£¨x£¬y£©ÊÇÖ±½Ç×ø±êƽÃæÉϵĶ¯µã£¬Èô½«µãPµÄºá×ø±ê±£³Ö²»±ä¡¢×Ý×ø±êÀ©´óµ½
2
±¶ºóµÃµ½µãQ£¨x£¬
2
y
£©Âú×ã
AQ
BQ
=1
£®
£¨1£©Ç󶯵ãPËùÔÚÇúÏßCµÄ¹ì¼£·½³Ì£»
£¨2£©¹ýµãB×÷бÂÊΪ-
2
2
µÄÖ±Ïßl½»ÇúÏßCÓÚM¡¢NÁ½µã£¬ÇÒÂú×ã
OM
+
ON
+
OH
=
0
£¬ÓÖµãH¹ØÓÚÔ­µãOµÄ¶Ô³ÆµãΪµãG£¬ÊÔÎÊËĵãM¡¢G¡¢N¡¢HÊÇ·ñ¹²Ô²£¬Èô¹²Ô²£¬Çó³öÔ²ÐÄ×ø±êºÍ°ë¾¶£»Èô²»¹²Ô²£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©È·¶¨ÏòÁ¿AQ£¬BQµÄ×ø±ê£¬ÀûÓÃ
AQ
BQ
=1
£¬¼´¿ÉµÃµ½¶¯µãPËùÔÚÇúÏßCµÄ¹ì¼£·½³Ì£»
£¨2£©¼ÙÉèlµÄ·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓÃÏòÁ¿ÖªÊ¶£¬È·¶¨M£¬N£¬G£¬HµÄ×ø±ê£¬½ø¶øÈ·¶¨µãµ½ËĵãµÄ¾àÀëÏàµÈ£¬´Ó¶ø¿ÉµÃ½áÂÛ£®
½â´ð£º½â£º£¨1£©ÒÀ¾ÝÌâÒ⣬ÓÐ
AQ
=(x+1£¬
2
y)
£¬
BQ
=(x-1£¬
2
y)

¡ß
AQ
BQ
=1
£¬
¡àx2-1+2y2=1£®
¡à¶¯µãPËùÔÚÇúÏßCµÄ¹ì¼£·½³ÌÊÇ
x2
2
+y2=1
£®
£¨2£©ÒòÖ±Ïßl¹ýµãB£¬ÇÒбÂÊΪk=-
2
2
£¬¹ÊÓÐl£ºy=-
2
2
(x-1)
£®
ÁªÁ¢·½³Ì×é
x2
2
+y2=1
y=-
2
2
(x-1)
£¬µÃ2x2-2x-1=0£®
ÉèÁ½ÇúÏߵĽ»µãΪM£¨x1£¬y1£©¡¢N£¨x2£¬y2£©£¬
¡àx1+x2=1£¬y1+y2=
2
2
£®
ÓÖ
OM
+
ON
+
OH
=
0
£¬µãGÓëµãH¹ØÓÚÔ­µã¶Ô³Æ£¬
ÓÚÊÇ£¬¿ÉµÃµãH£¨-1£¬-
2
2
£©¡¢G£¨1£¬
2
2
£©£®
ÈôÏ߶ÎMN¡¢GHµÄÖд¹Ïß·Ö±ðΪl1ºÍl2£¬ÔòÓÐl1£ºy-
2
4
=
2
£¨x-
1
2
£©£¬l2£ºy=-
2
x
£®
ÁªÁ¢·½³Ì×飬½âµÃl1ºÍl2µÄ½»µãΪO1£¨
1
8
£¬-
2
8
£©£®
Òò´Ë£¬¿ÉËãµÃ|O1H|=
(
9
8
)
2
+(
3
2
8
)
2
=
3
11
8
£¬|O1M|=
(x1-
1
8
)
2
+(y1+
2
8
)
2
=
3
11
8
£®
ËùÒÔ£¬ËĵãM¡¢G¡¢N¡¢H¹²Ô²£¬Ô²ÐÄ×ø±êΪO1£¨
1
8
£¬-
2
8
£©£¬°ë¾¶Îª
3
11
8
£®
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²éËĵ㹲Բ£¬ÕýÈ·ÔËÓÃÏòÁ¿ÖªÊ¶£¬È·¶¨Ô²ÐÄ×ø±êÓë°ë¾¶Êǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•»ÆÆÖÇøһģ£©Èô0£¼¦Á£¼
¦Ð
2
£¼¦Â£¼¦Ð£¬sin¦Á=
3
5
£¬sin£¨¦Á+¦Â£©=
5
13
£¬Ôòcos¦Â=
-
33
65
-
33
65
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•»ÆÆÖÇøһģ£©ÒÑÖªËÄÀâ׶S-ABCDµÄµ×ÃæABCDÊÇÖ±½ÇÌÝÐΣ¬AB¡ÎCD£¬BC¡ÍAB£¬²àÃæSABΪÕýÈý½ÇÐΣ¬AB=BC=4£¬CD=SD=2£®ÈçͼËùʾ£®
£¨1£©Ö¤Ã÷£ºSD¡ÍƽÃæSAB£»
£¨2£©ÇóËÄÀâ׶S-ABCDµÄÌå»ýVS-ABCD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•»ÆÆÖÇøһģ£©ÒÑÖªº¯Êýy=f£¨x£©ÊÇRÉϵÄżº¯Êý£¬µ±x¡Ý0ʱ£¬ÓÐf£¨x£©=
2
¦Ð
|x-¦Ð| (x£¾
¦Ð
2
)
sinx  (0¡Üx¡Ü
¦Ð
2
)
¹ØÓÚxµÄ·½³Ìf£¨x£©=m£¨m¡ÊR£©ÓÐÇÒ½öÓÐËĸö²»Í¬µÄʵÊý¸ù£¬Èô¦ÁÊÇËĸö¸ùÖеÄ×î´ó¸ù£¬Ôòsin£¨
¦Ð
3
+¦Á£©=
-
1
2
-
1
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•»ÆÆÖÇøһģ£©ÒÑÖªÁ½µãA£¨-1£¬0£©¡¢B£¨1£¬0£©£¬µãP£¨x£¬y£©ÊÇÖ±½Ç×ø±êƽÃæÉϵĶ¯µã£¬Èô½«µãPµÄºá×ø±ê±£³Ö²»±ä¡¢×Ý×ø±êÀ©´óµ½
2
±¶ºóµÃµ½µãQ£¨x£¬
2y
£©Âú×ã
AQ
BQ
=1
£®
£¨1£©Ç󶯵ãPËùÔÚÇúÏßCµÄ¹ì¼£·½³Ì£»
£¨2£©¹ýµãB×÷бÂÊΪ-
2
2
µÄÖ±Ïßi½»ÇúÏßCÓÚM¡¢NÁ½µã£¬ÇÒÂú×ã
OM
+
ON
+
OH
=
0
£¨OΪ×ø±êÔ­µã£©£¬ÊÔÅжϵãHÊÇ·ñÔÚÇúÏßCÉÏ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•»ÆÆÖÇøһģ£©ÒÑÖªa£¼b£¬ÇÒa2-a-6=0£¬b2-b-6=0£¬ÊýÁÐ{an}¡¢{bn}Âú×ãa1=1£¬a2=-6a£¬an+1=6an-9an-1£¨n¡Ý2£¬n¡ÊN*£©£¬bn=an+1-ban£¨n¡ÊN*£©£®
£¨1£©ÇóÖ¤ÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨2£©ÒÑÖªÊýÁÐ{cn}Âú×ãcn=
an3n
£¨n¡ÊN*£©£¬ÊÔ½¨Á¢ÊýÁÐ{cn}µÄµÝÍƹ«Ê½£¨ÒªÇ󲻺¬an»òbn£©£»
£¨3£©ÈôÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇóSn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸