精英家教网 > 高中数学 > 题目详情
(2013•和平区二模)函数f(x)=
1
2
lnx+x2-6x+8
在区间(2,3)内的零点个数是(  )
分析:要求函数的零点,只要使得函数等于0,移项变成等号两个边分别是两个基本初等函数,在同一个坐标系中画出函数的图象,看出交点的个数.
解答:解:∵f(x)=
1
2
lnx+x2-6x+8
=0
∴-2x2+12x-16=lnx,
令y1=lnx,y2=-2x2+12x-16,
根据这两个函数的图象在同一个坐标系中的位置关系知,
两个图象在区间(2,3)内有1个公共点,
∴原函数在区间(2,3)内的零点个数是1.
故选C.
点评:本题考查函数的零点,解题的关键是把一个函数变化为两个基本初等函数,利用数形结合的方法得到结果,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•和平区二模)已知函数y=f(x),x∈R满足f(x+1)=f(x-1).且x∈[-1,1]时,f(x)=x2.则y=f(x)与y=log5x的图象的交点个数为
4
4
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•和平区二模)若i是虚数单位,则复数
1-
3
i
(
3
-i)
2
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•和平区二模)阅读如图所示的程序框图,运行相应的程序,则输出的结果S的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•和平区二模)条件p:
1
x
<1
,条件q:
1
x
<x
则¬p是¬q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•和平区二模)已知函数y=Asin(ωx+φ)(A>0,ω>0),|φ|<π)的部分图象如图所示,则它的解析式为(  )

查看答案和解析>>

同步练习册答案