精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= 在x=1处取得极值.
(1)求函数y=f(x)的单调区间;
(2)当x∈[1,+∞)时,f(x)≥ 恒成立,求实数m的取值范围;
(3)当n∈N* , n≥2时,求证:nf(n)<2+ + +…+

【答案】
(1)解:由题意得

所以f'(1)=1﹣a=0即a=1,∴

令f'(x)>0,可得0<x<1,令f'(x)<0,可得x>1,

所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.


(2)解:由题意要使x∈[1,+∞)时, 恒成立,

,则m≤[h(x)]min

,又令g(x)=x﹣lnx,

,又x≥1,所以

所以g(x)在[1,+∞)上单调递增,

即g(x)≥g(1)=1>0,

即h(x)在[1,+∞)上单调递增,

所以[h(x)]min=h(1)=2,∴m≤2.


(3)解:∵函数f(x)在区间(1,+∞)上单调递减,

(n∈N*,n≥2),

,而nf(n)=1+lnn,

结论成立.


【解析】(1)求出函数的导数,求出a的值,解关于导函数的不等式,求出函数的单调区间即可;(2)问题转化为 ,令 ,根据函数的单调性求出h(x)的最小值,从而求出m的范围即可;(3)求出ln(n+1)﹣lnn< ,结合nf(n)=1+lnn,证出结论即可.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减),还要掌握函数的最大(小)值与导数(求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数,

(1)求实数m的值;

(2)判断函数的单调性并用定义法加以证明;

(3)若函数上的最小值为,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品的保鲜时间t(单位:小时)与储藏温度x(单位:)满足函数关系且该食品在4的保鲜时间是16小时.

已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示.给出以下四个结论:

该食品在6的保鲜时间是8小时;

x[66]时,该食品的保鲜时间t随着x增大而逐渐减少;

到了此日13时,甲所购买的食品还在保鲜时间内;

到了此日14时,甲所购买的食品已然过了保鲜时间.

其中,所有正确结论的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,且AC=BD,平面PA⊥平面ABCD,E为PD的中点.

(1)证明:PB∥平面AEC;
(2)在△PAD中,AP=2,AD=2 ,PD=4,三棱锥E﹣ACD的体积是 ,求二面角D﹣AE﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点为F(2,0),M为椭圆的上顶点,O为坐标原点,且△MOF是等腰直角三角形.
(1)求椭圆的方程;
(2)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1 , k2 , 且k1+k2=8,证明:直线AB过定点( ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若椭圆和椭圆的焦点相同且.给出如下四个结论:

①椭圆与椭圆一定没有公共点 ②

其中所有正确结论的序号是( )

A. ①②③ B. ①③④ C. ①②④ D. ②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线与抛物线相交于不同的两点.

(1)如果直线过抛物线的焦点,求的值;

(2)如果 ,证明:直线必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线f(x)=ke2x在点x=0处的切线与直线x﹣y﹣1=0垂直,若x1 , x2是函数g(x)=f(x)﹣|1nx|的两个零点,则( )
A.1<x1x2
B.<x1x2<1
C.2<x1x2<2
D.<x1x2<2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的一段图像如图所示.

(1)求此函数的解析式;

(2)求此函数在上的单调递增区间.

查看答案和解析>>

同步练习册答案