精英家教网 > 高中数学 > 题目详情
如图三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°,
证明:AB⊥A1C.
考点:空间中直线与直线之间的位置关系
专题:空间位置关系与距离
分析:取AB的中点O,连接OC,OA1,A1B,利用已知条件,先证明AB⊥平面OA1C,由此能够证明AB⊥A1C.
解答: 证明:取AB的中点O,连接OC,OA1,A1B,
∵CA=CB,
∴OC⊥AB,
又∵AB=AA1,∠BAA1=60°,
∴△AA1B是等边三角形,
∴OA1⊥AB,
∵OC∩OA1=O,
∴AB⊥平面OA1C,
∵A1C?平面OA1C,
∴AB⊥A1C.
点评:本题考查异面直线垂直的证明,解题时要注意空间思维能力的培养,注意化空间问题为平面问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
b
满足:|
a
|=1,|
b
|=2,且
a
b
的夹角为60°.
(Ⅰ)求
a
+
b
的模;
(Ⅱ)若λ
a
-6
b
与λ
a
+
b
互相垂直,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=x|x-a|(x∈R).
(1)当a=2时,画出函数y=f(x)的大致图象;

(2)当a=2时,根据图象写出函数y=f(x)的单调减区间,并用定义证明你的结论;
(3)试讨论关于x的方程f(x)+1=a解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2lnx-x2+ax(a∈R).
(Ⅰ)当a=2时,求f(x)的图象在x=1处的切线方程;
(Ⅱ)若函数g(x)=f(x)-ax+m在[
1
e
,e]上有两个零点,求实数m的取值范围;
(Ⅲ)若函数f(x)的图象与x轴有两个不同的交点A(x1,0),B(x2,0),且0<x1<x2,求证:f′(
x1+x2
2
)<0(其中f′(x)是f(x)的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aln(x+1),g(x)=x-
1
2
x2,a∈R.
(Ⅰ)若a=-1,求曲线y=f(x)在x=3处的切线方程;
(Ⅱ)若对任意的x∈[0,+∞),都有f(x)≥g(x)恒成立,求a的最小值;
(Ⅲ)设p(x)=f(x-1),a>0,若A(x1,y1),B(x2,y2)为曲线y=p(x)的两个不同点,满足0<x1<x2,且?x3∈(x1,x2),使得曲线y=f(x)在x3处的切线与直线AB平行,求证:x3
x1+x2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在某国际高端经济论坛上,前六位发言的是与会的含有甲、乙的6名中国经济学专家,他们的发言顺序通过随机抽签方式决定.
(Ⅰ)求甲、乙两位专家恰好排在前两位出场的概率;
(Ⅱ)发言中甲、乙两位专家之间的中国专家数记为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}单调递增,a1=1,且a2,a3+4,2a7+1构成等比数列.
(1)求数列{an}的公差d
(2)令bn=
1
an
+
an+1
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b、c为正数,且3a=4b=6c,求证:
1
c
-
1
a
=
1
2b

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>0,则a+
9
a+1
的最小值是
 

查看答案和解析>>

同步练习册答案