分析 由两角和与差的正弦公式和整体思想可得sinαcosβ和cosαsinβ的值,再由同角三角函数的基本关系变形要求的式子代入计算可得.
解答 解:∵sin(α+β)=sinαcosβ+cosαsinβ=$\frac{1}{2}$,
sin(α-β)=sinαcosβ-cosαsinβ=$\frac{1}{3}$,
∴sinαcosβ=$\frac{5}{12}$,cosαsinβ=$\frac{1}{12}$,
∴$\frac{tan(α+β)-tanα-tanβ}{ta{n}^{2}βtan(α+β)}$=$\frac{\frac{tanα+tanβ}{1-tanαtanβ}-(tanα+tanβ)}{ta{n}^{2}β•\frac{tanα+tanβ}{1-tanαtanβ}}$
=$\frac{\frac{1}{1-tanαtanβ}-1}{ta{n}^{2}β•\frac{1}{1-tanαtanβ}}$=$\frac{\frac{tanαtanβ}{1-tanαtanβ}}{\frac{ta{n}^{2}β}{1-tanαtanβ}}$=$\frac{tanα}{tanβ}$=$\frac{sinαcosβ}{cosαsinβ}$=5
点评 本题考查两角和与差的正弦公式,考查同角三角函数的基本关系和整体法的应用,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com