精英家教网 > 高中数学 > 题目详情
3.已知sin($\frac{π}{2}$-α)+cos($\frac{2π}{3}$-α)=$\frac{2\sqrt{3}}{5}$,求cos(2α+$\frac{π}{3}$)的值.

分析 由条件利用两角和差的余弦公式、诱导公式求得sin(α+$\frac{π}{6}$)的值,再利用二倍角的余弦公式求得要求式子的值.

解答 解:∵sin($\frac{π}{2}$-α)+cos($\frac{2π}{3}$-α)=cosα+cos$\frac{2π}{3}$cosα+sin$\frac{2π}{3}$sinα
=$\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα=sin(α+$\frac{π}{6}$)=$\frac{2\sqrt{3}}{5}$,
∴cos(2α+$\frac{π}{3}$)=1-2•${sin}^{2}(α+\frac{π}{6})$=1-2×$\frac{12}{25}$=$\frac{1}{25}$.

点评 本题主要考查两角和差的余弦公式、诱导公式、二倍角的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设集合A={1,a,b},集合B={a,a2,ab},且A、B中的元素完全一样,则实数a2015+b2015=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.甲船自某港出发时,乙船在离港7海里的海上驶向该港,已知两船的航向成120°角,甲、乙两船航速之比为2:1,求两船间距离最短时,各离该海港多远?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知A,B,C是直线m上的三点,且|AB|=|BC|=6,⊙O切直线m于点A,又过B,C作异于直线m的两切线,切点分别为D,E,设两切线交于点P.

(1)求点P的轨迹E的方程;
(2)证明:已知S是轨迹E上异于A1,A2(轨迹E顶点)的一点,直线A1S,A2S分别交直线l:x=t(t为常数)于不同两点M,N,点Q在直线l上,若Q为线段MN的中点,则直线SQ与轨迹E有且只有一个公共点S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a是18和22的等差中项,某人买了一辆价值a万元的新车,专家预测这种车每年按10%的速度折旧.
(1)求a的值;
(2)若他打算用满4年时卖掉这辆车,求他大概能得到多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.甲、乙两人从4门课程中各选修1门,则不同的选法有(  )
A.8种B.12种C.16种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.化简:sin40°•(tan10°-$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.$\frac{(sin\frac{π}{10}+cos\frac{π}{10})(sin\frac{3π}{20}+cos\frac{3π}{20})}{cos\frac{π}{10}cos\frac{3π}{20}}$的值等于(  )
A.2B.$\sqrt{2}$C.1+$\sqrt{2}$D.2+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}中,a1=a,an+1=ban+c.
(1)当a、b、c满足什么条件时,{an}是等差数列;
(2)当a、b、c满足什么条件时,{an}是等比数列.

查看答案和解析>>

同步练习册答案