精英家教网 > 高中数学 > 题目详情
16.已知椭圆${x^2}+\frac{y^2}{4}=1$,A、B是椭圆的左右顶点,P是椭圆上不与A、B重合的一点,PA、PB的倾斜角分别为α、β,则$\frac{{cos({α-β})}}{{cos({α+β})}}$=$-\frac{3}{5}$.

分析 设P(cosθ,2sinθ),可得$tanα=\frac{2sinθ}{cosθ+1},tanβ=\frac{2sinθ}{cosθ-1}$,代入$\frac{{cos({α-β})}}{{cos({α+β})}}$,化简整理即可得出.

解答 解:设P(cosθ,2sinθ),
∴$tanα=\frac{2sinθ}{cosθ+1},tanβ=\frac{2sinθ}{cosθ-1}$,$\frac{{cos({α-β})}}{{cos({α+β})}}=\frac{1+tanαtanβ}{1-tanαtanβ}=\frac{1-4}{1+4}=-\frac{3}{5}$.
故答案为:-$\frac{3}{5}$.

点评 本题考查了椭圆的参数方程、三角函数化简求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,在Rt△ABC中,A=90°,AB=AC=2$\sqrt{2}$,D、E分别为AC、AB的中点,将△ABC沿着DE折叠,使平面ADE⊥平面CDEB.
(I)若F为AC的中点,求证:DF∥平面ABE;
(Ⅱ)设θ为平面ABE与平面ACD两个平面相交所成的锐角,求θ的正弦值;
(Ⅲ)点H是线段BC上一个动点(点H不与B、C重合),是否存在点H运动到某一位置,使得DH⊥AE成立,如果成立,确定H的位置,如果不成立,说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{47}{6}$B.$\frac{15}{2}$C.$\frac{23}{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求(1)|x-3|+|x+1|的最小值;
(2)|x-3|-|x+1|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在下列各组向量中,可以作为基底的是(  )
A.$\overrightarrow{{e}_{1}}$=(0,0),$\overrightarrow{{e}_{2}}$=(3,2)B.$\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(3,-2)
C.$\overrightarrow{{e}_{1}}$=(6,4),$\overrightarrow{{e}_{2}}$=(3,2)D.$\overrightarrow{{e}_{1}}$=(-2,5),$\overrightarrow{{e}_{2}}$=(2,-5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在极坐标系中,已知圆C的方程为ρ=2cos(θ+$\frac{π}{4}$),则圆心C的极坐标为(  )
A.$(1,-\frac{π}{4})$B.$(1,\frac{3π}{4})$C.$(\sqrt{2},-\frac{π}{4})$D.$(\sqrt{2},\frac{3π}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在(1-x)11的展开式中系数最大的是第7项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|-1<x<2},B={x|x≥-1},则A∩B=(  )
A.(-1,1]B.(-1,2)C.D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.(2-x)(1+x)5的展开式中x3的系数为(  )
A.-10B.10C.-15D.15

查看答案和解析>>

同步练习册答案