精英家教网 > 高中数学 > 题目详情
1.在极坐标系中,已知圆C的方程为ρ=2cos(θ+$\frac{π}{4}$),则圆心C的极坐标为(  )
A.$(1,-\frac{π}{4})$B.$(1,\frac{3π}{4})$C.$(\sqrt{2},-\frac{π}{4})$D.$(\sqrt{2},\frac{3π}{4})$

分析 圆C的方程为ρ=2cos(θ+$\frac{π}{4}$),即ρ2=2ρcos(θ+$\frac{π}{4}$),展开为:ρ2=2×$\frac{\sqrt{2}}{2}$(ρcosθ-ρsinθ),把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入即可得出直角坐标方程,配方可得圆心直角坐标,化为极坐标即可得出.

解答 解:圆C的方程为ρ=2cos(θ+$\frac{π}{4}$),即ρ2=2ρcos(θ+$\frac{π}{4}$),
展开为:ρ2=2×$\frac{\sqrt{2}}{2}$(ρcosθ-ρsinθ),
∴直角坐标方程为:x2+y2=$\sqrt{2}x$-$\sqrt{2}$y.
配方为:$(x-\frac{\sqrt{2}}{2})^{2}+(y+\frac{\sqrt{2}}{2})^{2}$=1,
圆心为C$(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2})$.
∴$ρ=\sqrt{(\frac{\sqrt{2}}{2})^{2}×2}$=1,tanθ=-1,θ∈$(-\frac{π}{2},0)$,解得$θ=-\frac{π}{4}$.
∴C的极坐标为:$(1,-\frac{π}{4})$.
故选:A.

点评 本题考查了极坐标方程化为直角坐标方程的方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中点,AC,BD交于O点,求二面角Q-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=log2(x+1).
(Ⅰ)求函数f(x)在定义域R上的解析式;
(Ⅱ)解关于x的不等式f(2x-1)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=1-cos2x+2$\sqrt{3}$sinxcosx-$\frac{1}{2}$cos2x,x∈R
(1)求f(x)的最小正周期和值域;
(2)若x0(0≤x0≤$\frac{π}{2}$)为f(x)的一个零点,求sin2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知椭圆${x^2}+\frac{y^2}{4}=1$,A、B是椭圆的左右顶点,P是椭圆上不与A、B重合的一点,PA、PB的倾斜角分别为α、β,则$\frac{{cos({α-β})}}{{cos({α+β})}}$=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直线l:3x+4y-5=0的单位法向量是$({\frac{3}{5},\frac{4}{5}})$或$({-\frac{3}{5},-\frac{4}{5}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四个图象,只有一个符合y=|k1x+b1|+|k2x+b2|-|k3x+b3|(k1,k2k3∈R+,b1b2b3≠0)的图象,则根据你所判断的图象,k1、k2、k3之间一定满足的关系是(  )
A.k1+k2=k3B.k1=k2=k3C.k1+k2>k3D.k1+k2<k3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,以矩形ABCD的一边AB为直径的半圆与对边CD相切,E为BC的中点,P为半圆弧上任意一点.若$\overrightarrow{AP}$=λ$\overrightarrow{AD}$+μ$\overrightarrow{AE}$,则λ-μ的最大值为(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,平面PAC⊥平面ABC,AC⊥BC,△PAC为等边三角形,PE∥BC,过BC作平面交AP,AE分别于点N,M,设$\frac{AM}{AE}$=$\frac{AN}{AP}$=λ.
(1)求证:MN∥平面ABC;
(2)求λ的值,使得平面ABC与平面MNC所成的锐二面角的大小为45°.

查看答案和解析>>

同步练习册答案