精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=1-cos2x+2$\sqrt{3}$sinxcosx-$\frac{1}{2}$cos2x,x∈R
(1)求f(x)的最小正周期和值域;
(2)若x0(0≤x0≤$\frac{π}{2}$)为f(x)的一个零点,求sin2x0的值.

分析 (1)利用二倍角公式及辅助角公式将f(x)化简,根据正弦函数图象及性质即可求得f(x)的最小正周期和值域;
(2)由f(x0)=0,求得sin(2x0-$\frac{π}{6}$)=-$\frac{1}{4}$,由x0的取值范围,即可求得2x0-$\frac{π}{6}$的取值范围,由同角三角函数的基本关系,求得cos(2x0-$\frac{π}{6}$)的值,由2x0=(2x0-$\frac{π}{6}$)+$\frac{π}{6}$,根据两角和的正弦公式即可求得sin2x0的值.

解答 解:(1)f(x)=1-$\frac{1+cos2x}{2}$+$\sqrt{3}$sin2x-$\frac{1}{2}$cos2x,
=$\sqrt{3}$sin2x-cos2x+$\frac{1}{2}$,
=2sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,…(4分)
 T=$\frac{2π}{ω}$=$\frac{2π}{2}$=π,
所以f(x)的最小正周期为π,
由sin(2x-$\frac{π}{6}$)∈[-1,1],
2sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$∈[-$\frac{3}{2}$,$\frac{5}{2}$],
∴f(x)的值域为[-$\frac{3}{2}$,$\frac{5}{2}$].…(6分)
(2)由f(x0)=2sin(2x0-$\frac{π}{6}$)+$\frac{1}{2}$=0,
得sin(2x0-$\frac{π}{6}$)=-$\frac{1}{4}$<0,…(7分)
又由0≤x0≤$\frac{π}{2}$,得-$\frac{π}{6}$≤2x0-$\frac{π}{6}$≤$\frac{5π}{6}$,…(8分)
∴-$\frac{π}{6}$≤2x0-$\frac{π}{6}$<0,…(9分)
∴cos(2x0-$\frac{π}{6}$)=$\sqrt{1-si{n}^{2}(2{x}_{0}-\frac{π}{6})}$=$\frac{\sqrt{15}}{4}$,…(10分)
则  sin2x0=sin[(2x0-$\frac{π}{6}$)+$\frac{π}{6}$],
=sin(2x0-$\frac{π}{6}$)cos$\frac{π}{6}$+cos(2x0-$\frac{π}{6}$)sin$\frac{π}{6}$ …(11分)
=-$\frac{1}{4}$×$\frac{\sqrt{3}}{2}$+$\frac{\sqrt{15}}{4}$×$\frac{1}{2}$,
=$\frac{\sqrt{15}-\sqrt{3}}{8}$,
sin2x0=$\frac{\sqrt{15}-\sqrt{3}}{8}$.…(13分)

点评 本题考查三角函数中的恒等变换的应用,考查二倍角公式、辅助角公式及两角和差的公式的综合运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上的一点,$\widehat{AE}$=$\widehat{AC}$,DE交AB于点F.
(1)求证:PF•PO=PA•PB;
(2)若PD=4,PB=2,DF=$\frac{20}{7}$,求弦CD的弦心距.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:?x∈R,sinx+cosx≠2,命题q:?x0∈R,x02+x0+1<0,则(  )
A.命题p∧(?q)是真命题B.命题p∧q是真命题
C.命题p∨q是假命题D.命题p∨(?q)是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.高三某班有学生60人,现将所有同学从01~60随机编号,然后用系统抽样的方法抽取一个容量为5的样本,已知编号为17的同学在样本中,则以下会被抽到的编号为(  )
A.08B.25C.41D.54

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求(1)|x-3|+|x+1|的最小值;
(2)|x-3|-|x+1|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.满足$|{\begin{array}{l}{sinx}&{\sqrt{3}}\\{cosx}&{1}\end{array}}|=0$的实数x的取值范围是$x=kπ+\frac{π}{3},k∈Z$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在极坐标系中,已知圆C的方程为ρ=2cos(θ+$\frac{π}{4}$),则圆心C的极坐标为(  )
A.$(1,-\frac{π}{4})$B.$(1,\frac{3π}{4})$C.$(\sqrt{2},-\frac{π}{4})$D.$(\sqrt{2},\frac{3π}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若i为虚数单位,则$\frac{{1-\sqrt{2}i}}{{\sqrt{2}+i}}$=(  )
A.1+iB.1-iC.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若a、b满足条件$\left\{\begin{array}{l}ax+by-1=0\\({3a+4b})x+({a-5b})y-({7a+3b})=0\end{array}$(a>0,b>0),则$\frac{8}{a}$+$\frac{1}{b}$的最小值为25.

查看答案和解析>>

同步练习册答案