精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=2cos(2ωx+$\frac{π}{6}$)+$\sqrt{3}$的图象与直线y=-2+$\sqrt{3}$的相邻两个交点之间的距离为π.
(1)求ω的值;
(2)求函数f(x)在[0,2π]上的单调递增区间.

分析 (1)根据函数的周期即可求ω的值;
(2)求出函数的解析式,结合函数的单调性即可求函数f(x)在[0,2π]上的单调递增区间.

解答 解:(1)∵f(x)=2cos(2ωx+$\frac{π}{6}$)+$\sqrt{3}$的最小值为-2+$\sqrt{3}$,
∴若函数f(x)的图象与y=-2+$\sqrt{3}$的相邻两个交点之间的距离为π,
则函数f(x)的周期是π,即T=$\frac{2π}{2ω}$=π,
则ω=1;
(2)∵ω=1,
∴f(x)=2cos(2x+$\frac{π}{6}$)+$\sqrt{3}$,
由2kπ-π≤2x+$\frac{π}{6}$≤2kπ,k∈Z,
得kπ-$\frac{7π}{12}$≤x≤kπ-$\frac{π}{12}$,
当k=1时,$\frac{5π}{12}$≤x≤$\frac{11π}{12}$,
当k=2时,$\frac{17π}{12}$≤x≤$\frac{23π}{12}$,
即函数f(x)在[0,2π]上的单调递增区间为[$\frac{5π}{12}$,$\frac{11π}{12}$],[$\frac{17π}{12}$,$\frac{23π}{12}$].

点评 本题主要考查函数解析式的求解,以及函数单调区间的求解,根据函数的周期性求出函数的解析式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x-eax(a>0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在[$\frac{1}{a}$,$\frac{2}{a}$]上的最大值;
(Ⅲ)若存在x1,x2(x1<x2),使得f(x1)=f(x2)=0,证明:$\frac{{x}_{1}}{{x}_{2}}$<ae.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知在△ABC中,角A、B、C对应的边分别为a、b、c,若asin($\frac{π}{2}$+C),bsin($\frac{π}{2}$-B),csin($\frac{π}{2}$-A)依次成等差数列.
(1)求角B;
(2)如果△ABC的外接圆的面积为π,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\left\{\begin{array}{l}{sinα+sinβ=\frac{1}{2}}\\{y=co{s}^{2}α-sinβ}\end{array}\right.$,求值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的最小正周期为π.
(1)若f($\frac{α}{2}$)=$\frac{2}{3}$($\frac{π}{3}$<α<$\frac{π}{2}$),求sinα的值;
(2)△ABC中,角A,B,C所对的边分别为a,b,c,若f($\frac{A}{2}$-$\frac{π}{12}$)=$\frac{2\sqrt{3}}{3}$,a=2,B-A=$\frac{π}{2}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}的前n项和为Sn,且an=Sn•Sn-1(n≥2),a1=$\frac{2}{9}$,则an=$\left\{\begin{array}{l}{\frac{2}{9},}&{n=1}\\{\frac{4}{(11-2n)(13-2n)},}&{n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知过抛物线y2=2x的焦点F作直线交抛物线于A、B两点,若|AB|=$\frac{25}{12}$,且|AF|<|BF|,则|AF|=(  )
A.$\frac{3}{4}$B.$\frac{5}{6}$C.$\frac{5}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直角边长为1的等腰直角三角形在x轴上作翻滚运动,某时刻A与坐标原点重合,AB=2,且AB在x轴上,设顶点A(x,y)的轨迹方程为y=f(x),关于函数y=f(x)的说法正确的是①③④
①f(x)的值域为[0,$\sqrt{2}$];
②f(x)是周期函数且周期为1+$\sqrt{2}$;
③f(x)的一个减区间是[$\sqrt{2}$,$\sqrt{2}$+2];
④${∫}_{0}^{\sqrt{2}+1}$f(x)dx=$\frac{3}{4}$π+$\frac{1}{2}$;
⑤f(1)<f($\sqrt{2}$+1)<f(100+51$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=ax3+bx2+c的图象经过点(0,1),且在x=1处的切线方程y=x-2.
(1)求y=f(x)的解析式;
(2)求y=f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案