精英家教网 > 高中数学 > 题目详情
17.解不等式:|$\frac{x}{x+1}$|>$\frac{x}{x+1}$.

分析 利用绝对值的几何意义,转化不等式为分式不等式,求解即可.

解答 解:不等式:|$\frac{x}{x+1}$|>$\frac{x}{x+1}$,等价于:$\frac{x}{x+1}<0$,即x(x+1)<0,
解得-1<x<0.
不等式的解集为:{x|-1<x<0}.

点评 本题考查不等式的解法,转化思想的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知在正方体ABCD-A1B1C1D1中,O是DB的中点,直线A1C交平面C1BD于点M,判断下列结论是否正确:
(1)C1,M,O三点共线;
(2)C1,M,O,C四点共面;
(3)C1,O,A1,M四点共面;
(4)D,D1,O,M四点共面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列函数的最大值和最小值,以及使函数取得这些值的自变量x的值
(1)y=$\frac{1}{1+co{s}^{2}x}$;
(2)y=2-(sinx+1)2
(3)y=$\frac{1}{5si{n}^{2}x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点O1是正方体ABCD-A1B1C1D1的上底面的中心,求证:对角线A1C与平面AD1B1的交点P一定在AO1上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在如图所示的多面体中,底面BCFE是梯形,EF∥BC,EF⊥EB,平面ABE与平面BCFE所成的角为直二面角,AD∥EF,BC=2AD=4,EF=3,AE=BE=2,AB=2$\sqrt{2}$,G为BC中点.
(Ⅰ)求证:AE⊥平面BCFE;
(Ⅱ)求异面直线AE与CD所成角的正切;
(Ⅲ)求证:BD⊥EG.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知各项均为正数的等比数列{an},前n项和为Sn,a1=1,S4=5S2,数列{bn}的前n项和Tn.且b1=2,nbn+1 =2Tn,cn=$\frac{{b}_{n}}{n}$.
(1)求数列{an}、{bn}、{cn}的通项公式;
(2)比较ancn和bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}的通项an=$\frac{nx}{(x+1)(2x+1)…(nx+1)}$,n∈N*,若a1+a2+a3<1,则实数x可能等于(  )
A.-$\frac{3}{2}$B.-$\frac{5}{12}$C.-$\frac{4}{7}$D.-$\frac{11}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若lg2=a,lg3=b,则log23等于(  )
A.$\frac{b}{a}$B.$\frac{a}{b}$C.abD.ba

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=f(x)满足:对任意的x1,x2∈R,总有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,则不等式f(m2+1)>f(2m)的解集为{m|m≠0}.

查看答案和解析>>

同步练习册答案