精英家教网 > 高中数学 > 题目详情
在数列{an}中,若对任意的n∈N*,都有
an+2
an+1
-
an+1
an
=t(t为常数),则称数列{an}为比等差数列,t称为比公差.现给出以下命题:
①等比数列一定是比等差数列,等差数列不一定是比等差数列;
②若数列{an}满足an=
2n-1
n2
,则数列{an}是比等差数列,且比公差t=
1
2

③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),则该数列不是比等差数列;
④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
其中所有真命题的序号是______.
①若数列{an}为等比数列,且公比为q,则
an+2
an+1
-
an+1
an
=q-q=0,为常数,故等比数列一定是比等差数列,
若数列{an}为等差数列,且公差为d,当d=0时,
an+2
an+1
-
an+1
an
=1-1=0,为常数,是比等差数列,
当d≠0时,
an+2
an+1
-
an+1
an
不为常数,故不是比等差数列,故等差数列不一定是比等差数列,故正确;
②若数列{an}满足an=
2n-1
n2
,则
an+2
an+1
-
an+1
an
=
2(n+1)2
(n+2)2
-
2n2
(n+1)2
不为常数,故数列{an}不是比等差数列,故错误;
③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),可得c3=2,c4=3,故
c3
c2
-
c2
c1
=1,
c4
c3
-
c3
c2
=-
1
2

显然
c3
c2
-
c2
c1
c4
c3
-
c3
c2
,故该数列不是比等差数列,故正确;
④若{an}是等差数列,{bn}是等比数列,可举{an}为0列,则数列{anbn}为0列,显然不满足定义,即数列{anbn}不是比等差数列,故错误.
故答案为:①③
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,若a1=
1
2
an=
1
1-an-1
(n≥2,n∈N*),则a2010等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,若an2-an-12=p(n≥2,n∈N*,p为常数),则称{an}为“等方差数列”,下列是对“等方差数列”的判断;
①若{an}是等方差数列,则{an2}是等差数列;
②{(-1)n}是等方差数列;
③若{an}是等方差数列,则{akn}(k∈N*,k为常数)也是等方差数列;
④若{an}既是等方差数列,又是等差数列,则该数列为常数列.
其中正确命题序号为(  )
A、①②③B、①②④C、①②③④D、②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,若a1=2,an=
1
1-an-1
(n≥2,n∈N*),则a7
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,若a1=2,a2=6,且当n∈N*时,an+2是an•an+1的个位数字,则a2011=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知无穷数列{an}具有如下性质:①a1为正整数;②对于任意的正整数n,当an为偶数时,an+1=
a n
2
;当an为奇数时,an+1=
an+1
2
.在数列{an}中,若当n≥k时,an=1,当1≤n<k时,an>1(k≥2,k∈N*),则首项a1可取数值的个数为
 
(用k表示).

查看答案和解析>>

同步练习册答案