精英家教网 > 高中数学 > 题目详情
在一个2×2列联表中,由其数据计算得χ2≈13.097,则认为两个变量间有关系的犯错概率不超过________.
0.001
χ2≈13.097>10.828,即在犯错误的概率不超过0.001的前提下认为两变量有关.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某大型公益活动从一所名牌大学的四个学院中选出了名学生作为志愿者,参加相关的活
动事宜.学生来源人数如下表:
学院
外语学院
生命科学学院
化工学院
艺术学院
人数




 
(1)若从这名学生中随机选出两名,求两名学生来自同一学院的概率;
(2)现要从这名学生中随机选出两名学生向观众宣讲此次公益活动的主题.设其中来自外语学院的人数为,令,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

寒假期间,我市某校学生会组织部分同学,用“10分制”随机调查“阳光花园”社区人们的幸福度,现从调查人群中随机抽取16名,如果所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶);若幸福度分数不低于8.5分,则该人的幸福度为“幸福”.

(1)求从这16人中随机选取3人,至少有2人为“幸福”的概率;
(2)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“幸福”的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了倡导健康、低碳、绿色的生活理念,某市建立了公共自行车服务系统鼓励市民租用公共自行车出行公共自行车按每车每次的租用时间进行收费,具体收费标准如下:
①租用时间不超过1小时,免费;
②租用时间为1小时以上且不超过2小时,收费1元;
③租用时间为2小时以上且不超过3小时,收费2元;
④租用时间超过3小时的时段,按每小时2元收费(不足1小时的部分按1小时计算)已知甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过1小时的概率分别是0.4和0.5 ,租用时间为1小时以上且不超过2小时的概率分别是0.5和0.3.
(1)求甲、乙两人所付租车费相同的概率;
(2)设甲、乙两人所付租车费之和为随机变量,求的分布列和数学期望E

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

将一颗质地均匀的正四面体骰子(四个面的点数分别为1,2,3,4)先后抛掷两次,记第一次出现的点数为,第二次出现的点数为
(1)记事件为“”,求
(2)记事件为“”,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

把半圆弧分成4等份,以这些分点(包括直径的两端点)为顶点,作出三角形,从这些三角形中任取3个不同的三角形,则这3个不同的三角形中钝角三角形的个数X的期望为 (   )
A.B.2C.3D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某学校的篮球队、羽毛球队、乒乓球队各有10名队员,某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:

(1)该队员只属于一支球队的概率;
(2)该队员最多属于两支球队的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

10张奖券中有3张是有奖的,某人从中不放回地依次抽两张,则在第一次抽到中奖券的条件下,第二次也抽到中奖券的概率为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案