精英家教网 > 高中数学 > 题目详情

已知圆C:x2+y2-4x-5=0.
(1)过点(5,1)作圆C的切线,求切线的方程;
(2)若圆C的弦AB的中点P(3,1),求AB所在直线方程.

解:由C:x2+y2-4x-5=0得圆的标准方程为(x-2)2+y2=9-----------(2分)
(1)显然x=5为圆的切线.------------------------(4分)
另一方面,设过(5,1)的圆的切线方程为y-1=k(x-5),即kx-y+1-5k=0;
所以,解得
于是切线方程为4x+3y-23=0和x=5.------------------------(7分)
(2)设所求直线与圆交于A,B两点,其坐标分别为(x1,y1)B(x2,y2
则有
两式作差得(x1+x2-4)(x2-x1)+(y2+y1)(y2-y1)=0--------------(10分)
因为圆C的弦AB的中点P(3,1),所以(x2+x1)=6,(y2+y1)=2
所以,故所求直线方程为 x+y-4=0-----------------(14分)
分析:(1)化圆的方程为标准方程,利用点线距离等于半径,可求切线方程,应注意有两条;
(2)设点作差,利用中点坐标,确定弦AB的斜率,即可求得AB所在直线方程.
点评:本题考查圆的切线,考查中点弦的问题,解题的关键是利用圆的特性,利用点到直线的距离公式求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知圆C:x2+y2=r2(r>0)与抛物线y2=40x的准线相切,若直线l:
x
a
y
b
=1
与圆C有公共点,且公共点都为整点(整点是指横坐标.纵坐标都是整数的点),那么直线l共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4与直线L:x+y+a=0相切,则a=(  )

查看答案和解析>>

同步练习册答案