Èçͼ£¬P1£¨x1£¬y1£©¡¢P2 £¨x2£¬y2£©¡¢¡­¡¢Pn£¨xn£¬yn£©£¨0£¼y1£¼y2£¼¡­£¼yn£©ÊÇÇúÏßC£ºy2=3x£¨y¡Ý0£©ÉϵÄn¸öµã£¬µãAi£¨ai£¬0£©£¨i=1£¬2£¬3£¬¡­£¬n£©ÔÚxÖáµÄÕý°ëÖáÉÏ£¬ ÇÒ¡÷Ai-1AiPiÊÇÕýÈý½ÇÐΣ¨A0ÊÇ×ø±êÔ­µã£©¡£
£¨1£©Ð´³öa1¡¢a2¡¢a3£»
£¨2£©Çó³öµãAn£¨an£¬0£©£¨n¡ÊN*£©µÄºá×ø±êan¹ØÓÚnµÄ±í´ïʽ£»
£¨3£©É裬Èô¶ÔÈÎÒâµÄÕýÕûÊýn£¬µ±m¡Ê[-1£¬1]ʱ£¬²»µÈʽt2-2mt+£¾bnºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§¡£
½â£º£¨1£©¡£
£¨2£©ÒÀÌâÒ⣬µÃ
Óɴ˼°
µÃ
¼´
ÓÉ£¨1£©¿É²ÂÏ룺
ÏÂÃæÓÃÊýѧ¹éÄÉ·¨ÓèÒÔÖ¤Ã÷£º
¢Ùµ±n=1ʱ£¬ÃüÌâÏÔÈ»³ÉÁ¢£»
¢Ú¼Ù¶¨µ±n=kʱÃüÌâ³ÉÁ¢£¬¼´ÓÐ
Ôòµ±n=k+1ʱ£¬ÓɹéÄɼÙÉè¼°

µÃ
¼´
½âÖ®µÃ²»ºÏÌâÒ⣬ÉáÈ¥£©
¼´µ±n=k+1ʱ£¬ÃüÌâ³ÉÁ¢
ÓÉ¢Ù¡¢¢ÚÖªÃüÌâ³ÉÁ¢£¬¼´¡£
£¨3£©


Áî
Ôò
ËùÒÔf£¨x£©ÔÚ[1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
¹Êµ±x=1ʱ£¬f£¨x£©È¡µÃ×îСֵ3£¬
¼´µ±n=1ʱ£¬


¼´
½âÖ®µÃ£¬t>2»òt£¼-2
¹ÊʵÊýtµÄȡֵ·¶Î§Îª£¨-¡Þ£¬-2£©¡È £¨2£¬+¡Þ£©¡£
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬P1£¨x1£¬y1£©¡¢P2£¨x2£¬y2£©¡¢¡­¡¢Pn£¨xn£¬yn£©£¨0£¼y1£¼y2£¼¡­£¼yn£©ÊÇÇúÏßC£ºy2=3x£¨y¡Ý0£©ÉϵÄn¸öµã£¬µãAi£¨ai£¬0£©£¨i=1£¬2£¬3£¬¡­£¬n£©ÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒ¡÷Ai-1AiPiÊÇÕýÈý½ÇÐΣ¨A0ÊÇ×ø±êÔ­µã£©£®
£¨1£©Ð´³öa1£¬a2£¬a3£»
£¨2£©Çó³öµãAn£¨an£¬0£©£¨n¡ÊN*£©µÄºá×ø±êan¹ØÓÚnµÄ±í´ïʽ£»²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬P1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡­£¬Pn£¨xn£¬yn£©£¨0£¼y1£¼y2£¼¡­£¼yn£©ÊÇÇúÏßC£ºy2=3x£¨y¡Ý0£©ÉϵÄn¸öµã£¬µãAi£¨ai£¬0£©£¨i=1£¬2£¬3£¬¡­£¬n£©ÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒ¡÷Ai-1AiPiÊÇÕýÈý½ÇÐΣ¨A0ÊÇ×ø±êÔ­µã£©£®Ôòa1=
 
£»²ÂÏëan¹ØÓÚnµÄ±í´ïʽΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬P1£¨x1£¬y1£©¡¢P2£¨x2£¬y2£©¡¢¡­¡¢Pn£¨xn£¬yn£©£¨0£¼y1£¼y2£¼¡­£¼yn£©ÊÇÇúÏßC£ºy2=3x£¨y¡Ý0£©ÉϵÄn¸öµã£¬µãAi£¨ai£¬0£©£¨i=1£¬2£¬3£¬¡­£¬n£©ÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒ¡÷Ai-1AiPiÊÇÕýÈý½ÇÐΣ¨A0ÊÇ×ø±êÔ­µã£©£®
£¨1£©Ð´³öa1£¬a2£¬a3£»
£¨2£©Çó³öµãAn£¨an£¬0£©£¨n¡ÊN*£©µÄºá×ø±êan¹ØÓÚnµÄ±í´ïʽ£»
£¨3£©Éèbn=
1
an+1
+
1
an+2
+
1
an+3
+¡­+
1
a2n
£¬Èô¶ÔÈÎÒâµÄÕýÕûÊýn£¬µ±m¡Ê[-1£¬1]ʱ£¬²»µÈʽt2-2mt+
1
6
£¾bn
ºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬P1£¨x1£¬y1£©¡¢P2£¨x2£¬y2£©¡¢¡­¡¢Pn£¨xn£¬yn£©£¨0£¼y1£¼y2£¼¡­£¼yn£© ÊÇÇúÏßC£ºy2=3x£¨y¡Ý0£©ÉϵÄn¸öµã£¬µãAi£¨ai£¬0£©£¨i=1£¬2£¬3£¬¡­n£©ÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒ¡÷Ai-1AiPiÊÇÕýÈý½ÇÐΣ¨A0ÊÇ×ø±êÔ­µã£©£®
£¨1£©Çóa1¡¢a2¡¢a3µÄÖµ£»
£¨2£©Çó³öµãAn£¨an£¬0£©£¨n¡ÊN+£©µÄºá×ø±êanºÍµãAn-1£¨an-1£¬0£©£¨n£¾0£¬n¡ÊN+£©ºá×ø±êan-1µÄ¹ØÏµÊ½£»
£¨3£©¸ù¾Ý£¨1£©µÄ½áÂÛ²ÂÏëan¹ØÓÚnµÄ±í´ïʽ£¬²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Õ¢±±Çø¶þÄ££©Èçͼ£¬P1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡­£¬Pn£¨xn£¬yn£©£¬¡­ÊÇÇúÏßC£ºy2=
1
2
x(y¡Ý0)
Éϵĵ㣬A1£¨a1£¬0£©£¬A2£¨a2£¬0£©£¬¡­£¬An£¨an£¬0£©£¬¡­ÊÇxÖáÕý°ëÖáÉϵĵ㣬ÇÒ¡÷A0A1P1£¬¡÷A1A2P2£¬¡­£¬¡÷An-1AnPn£¬¡­¾ùΪб±ßÔÚxÖáÉϵĵÈÑüÖ±½ÇÈý½ÇÐΣ¨A0Îª×ø±êÔ­µã£©£®
£¨1£©Ð´³öan-1¡¢anºÍxnÖ®¼äµÄµÈÁ¿¹ØÏµ£¬ÒÔ¼°an-1¡¢anºÍynÖ®¼äµÄµÈÁ¿¹ØÏµ£»
£¨2£©²Â²â²¢Ö¤Ã÷ÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©Éèbn=
1
an+1
+
1
an+2
+
1
an+3
+¡­+
1
a2n
£¬¼¯ºÏB={b1£¬b2£¬b3£¬¡­£¬bn£¬¡­}£¬A={x|x2-2ax+a2-1£¼0£¬x¡ÊR}£¬ÈôA¡ÉB=∅£¬Çóʵ³£ÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸