| A. | 4π | B. | $\frac{32π}{3}$ | C. | 16π | D. | 32π |
分析 当点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大,利用三棱锥O-ABC体积的最大值为$\frac{{2\sqrt{3}}}{3}$,求出半径,即可求出球O的表面积.
解答
解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大,设球O的半径为R,
此时VO-ABC=VC-AOB=$\frac{1}{3}×\frac{1}{2}{R}^{2}×\frac{\sqrt{3}}{2}×R$=$\frac{{2\sqrt{3}}}{3}$,
故R=2,则球O的表面积为4πR2=16π,
故选:C.
点评 本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大是关键.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[0,\frac{3}{4}]$ | B. | $(0,\frac{3}{4}]$ | C. | $[0,\frac{3}{4})$ | D. | $(0,\frac{3}{4})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com