精英家教网 > 高中数学 > 题目详情
12.已知A、B是球O的球面上两点,且∠AOB=120°,C为球面上的动点,若三棱锥O-ABC体积的最大值为$\frac{{2\sqrt{3}}}{3}$,则球O的表面积为(  )
A.B.$\frac{32π}{3}$C.16πD.32π

分析 当点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大,利用三棱锥O-ABC体积的最大值为$\frac{{2\sqrt{3}}}{3}$,求出半径,即可求出球O的表面积.

解答 解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大,设球O的半径为R,
此时VO-ABC=VC-AOB=$\frac{1}{3}×\frac{1}{2}{R}^{2}×\frac{\sqrt{3}}{2}×R$=$\frac{{2\sqrt{3}}}{3}$,
故R=2,则球O的表面积为4πR2=16π,
故选:C.

点评 本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知抛物线$\left\{{\begin{array}{l}{x=4{t^2}}\\{y=4t}\end{array}}\right.$(t为参数)的焦点为F,则点M(3,m)到F的距离|MF|为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线x-3y-1=0在y轴上的截距是$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对于给定数列{xn},若存在一个常数k∈N*,对于任意的n∈N*,使得xn+k=xn成立,则称数列{xn}是周期数列,k是数列{xn}的一个周期,若k是数列{xn}的周期,且1,2,…,k-1均不是数列{xn}的周期,则称k为数列{xn}的最小周期.已知数列{an}的最小周期为4,前n项和为Sn,且4Sn=(an+1)2
(1)求a1的值;
(2)求数列{an}通项公式an和前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{{3}^{x}-1}{{3}^{x}+1}$.
(1)判断f(x)的奇偶性 
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{a+blnx}{x+1}$在点(1,f(1))处的切线方程为x+y=2.
(Ⅰ)求a,b的值;
(Ⅱ)若对函数f(x)定义域内的任一个实数x,都有xf(x)<m恒成立,求实数m的取值范围.
(Ⅲ) 求证:对一切x∈(0,+∞),都有3-(x+1)•f(x)>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=2ax2+4(a-3)x+5在区间(-∞,3)上是减函数,则a的取值范围是(  )
A.$[0,\frac{3}{4}]$B.$(0,\frac{3}{4}]$C.$[0,\frac{3}{4})$D.$(0,\frac{3}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=ex+x2+x+1与g(x)的图象关于直线2x-y-3=0对称,P,Q分别是函数f(x),g(x)图象上的动点,则|PQ|的最小值为2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l1:2x-y-3=0,l2:x-my+1-3m=0,m∈R.
(1)若l1∥l2,求实数m的值;
(2)若l2在两坐标轴上有截距相等,求直线l2的方程.

查看答案和解析>>

同步练习册答案