(本题满分12分)
已知
是一个公差大于
的等差数列,且满足
.数列
,
,
,…,
是首项为
,公比为
的等比数列.
(1) 求数列
的通项公式;
(2) 若
,求数列
的前
项和
.
(1)
;(2)
.
【解析】
(Ⅰ)设等差数列{an}的公差为d,d>0,利用等差数列的通项表示已知,求解出d,a1,结合等差数列的通项即可求解
(Ⅱ)数列
,
,
,…,
是首项为
,公比为
的等比数列.得到
,![]()
,,结合数列的特点,考虑利用错位相减求解数列的和。
解: (1) 解: 设等差数列
的公差为
, 则依题知
,
由
且
得
; ……………………………………………………………………4分
(2) 由(1)得:
(
).
b1=1,当n≥2时,
,
![]()
![]()
因而
,
. ![]()
,…………………………7分
∴![]()
![]()
![]()
令![]()
①
则![]()
②
①-②得:
![]()
![]()
……………………………10分
∴
. ∴
. …………………………………………………………12分
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数
(
,
为常数),且方程
有两个实根为
.
(1)求
的解析式;
(2)证明:曲线
的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角
中,四边形
是边长为
的正方形,
,
为
上的点,且
⊥平面![]()
(Ⅰ)求证:
⊥平面![]()
(Ⅱ)求二面角
的大小;
(Ⅲ)求点
到平面
的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com