精英家教网 > 高中数学 > 题目详情
在△ABC中,sinA=2cosBsinC,则三角形为
等腰
等腰
三角形.
分析:由三角形的内角和及诱导公式得到sinA=sin(B+C),右边利用两角和与差的正弦函数公式化简,再根据已知的等式,合并化简后,再利用两角和与差的正弦函数公式得到sin(B-C)=0,由B与C都为三角形的内角,可得B=C,进而得到三角形为等腰三角形.
解答:解:∵A+B+C=π,即A=π-(B+C),
∴sinA=sin(B+C)=sinBcosC+cosBsinC,又sinA=2cosBsinC,
∴sinBcosC+cosBsinC=2cosBsinC,
变形得:sinBcosC-cosBsinC=0,
即sin(B-C)=0,又B和C都为三角形内角,
∴B=C,
则三角形为等腰三角形.
故答案为:等腰三角形
点评:此题考查了三角形形状的判断,涉及的知识有诱导公式,两角和与差的正弦函数公式,以及特殊角的三角函数值,熟练掌握公式是解本题的关键,同时注意三角形内角和定理及三角形内角的范围的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan
A+B
2
tan
C
2
;④cos
B+C
2
sin
A
2
,其中恒为定值的是(  )
A、②③B、①②C、②④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,sin(A-B)+sinC=
3
2
,BC=
3
AC
,则∠B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)在△ABC中,sin(C-A)=1,sinB=
1
3

(Ⅰ)求sinA的值;
(Ⅱ)设AC=
6
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,“sin(A-B)cosB+cos(A-B)sinB≥1”是“△ABC是直角三角形”的(  )
A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案